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Abstract
Swept volume computation—the determination of regions occupied by moving objects—is essential in graphics, robotics, and
manufacturing. Existing approaches either explicitly track surfaces, suffering from robustness issues under complex interac-
tions, or employ implicit representations that trade off geometric fidelity and face optimization difficulties. We propose a novel
inversion of motion perspective: rather than tracking object motion, we fix the object and trace spatial points backward in
time, reducing complex trajectories to efficiently linearizable point motions. Based on this, we introduce a multi-field tetrahe-
dral framework that maintains multiple distance fileds per element, preserving fine geometric details at trajectory intersections
where single-field methods fail. Our method robustly computes swept volumes for diverse motions, including translations and
screw motions, and enables practical applications in path planning and collision detection.

CCS Concepts
• Computing methodologies → Shape modeling;

1. INTRODUCTION

Swept volumes—the spatial regions traversed by moving ob-
jects—are fundamental geometric primitives in computer-aided de-
sign [PPSZ05,AMS14,AMYB01,SG05], robotics [AMY97,JSS24,
MFJQ∗16a, ITA∗23], and virtual reality [MGS17, KRL∗07]. Fig-
ure 1 illustrates a swept volume generated by an object fol-
lowing a trajectory. And Figure 2 demonstrates two specific ap-
plication scenarios: (a) robot vacuum path planning and colli-
sion avoidance, and (b) autonomous vehicle maneuvering in com-
plex environments like underground parking facilities. Accurate
swept volume computation significantly impacts collision detec-
tion [MFJQ∗16b,WZZ∗24,Xav97], spatial reasoning [AMYBJ06],
and geometric modeling [Lar20, WHS00]. Despite their impor-
tance, efficiently generating high-quality swept volumes for com-
plex shapes undergoing intricate motions remains challenging.

Traditional methods fall into two main categories: explicit
geometry-based approaches that construct boundaries directly from
meshes, and implicit field-based methods leveraging scalar fields.
Explicit geometry-based approaches directly operate on mesh rep-
resentations to construct swept volume boundaries, ranging from
analytical solutions for restricted motions (such as Minkowski
sums for translations) to sophisticated polyhedral sweeping algo-
rithms for general rigid motions [Kau93, Kor86, WL90]. These
methods face fundamental challenges in robustly handling complex
surface patch interactions during arbitrary motion. Implicit field-
based approaches represent swept volumes using scalar fields, typ-

Figure 1: Swept volume visualization. This geometric entity is
formed by the union of all spatial positions occupied by an object
as it moves along a defined trajectory, creating a continuous volu-
metric region.

(a) (b)
Figure 2: Real-world examples: (a) robot vacuum navigation; (b)
autonomous vehicle parking.
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ically signed distance functions (SDFs), to avoid explicit tracking
of surface intersections [SP96, SLL94, SAJ21]. Recent implicit ap-
proaches have made significant advances by attempting to obtain
distance values from arbitrary spatial points to the resulting swept
volumes through optimization. However, they are constrained by
the complexity of input model SDFs and motion functions. The op-
timization process often converges slowly, becomes trapped in lo-
cal minima, and lacks theoretical guarantees, especially for motions
containing high-frequency details. Furthermore, traditional isosur-
face extraction strategies applied to the resulting SDFs struggle to
preserve complex geometric details.

In this work, drawing inspiration from inverse analysis ap-
proaches in ray tracing methods [Bar86] and existing swept volume
computation techniques [SAJ21], and addressing the limitations of
single-field extraction methods, we propose a fundamentally differ-
ent approach based on motion perspective inversion. Our method
takes mesh models as both input and output. Rather than track-
ing objects through space, we fix the object and consider spatial
points traversing inverse trajectories through time. This perspec-
tive shift transforms the challenging problem of analyzing com-
plex object motion into the simpler task of studying individual
point trajectories, which can be linearly approximated within suffi-
ciently small temporal intervals. Leveraging this insight, we intro-
duce a multi-field isosurface extraction method maintaining multi-
ple scalar fields within each tetrahedral element, capturing complex
geometric features missed by single-field methods.

Our contributions include:

• Motion perspective inversion: Transforming complex motion
tracking into tractable point-wise operations.

• Multiple distance field representation: Preserving detailed ge-
ometric features via multiple scalar fields per tetrahedron.

• Four-dimensional incremental cutting: Robustly extracting
detailed swept volume surfaces.

These innovations enable accurate, efficient swept volume com-
putations suitable for practical applications.

2. RELATED WORK

Swept volume computation methods have evolved primarily along
two trajectories: explicit geometry-based approaches, which di-
rectly manipulate mesh representations, and implicit field-based
approaches, which utilize scalar fields to represent swept regions.
We review key developments in both categories, highlighting their
fundamental principles, advantages, and limitations.

2.1. Explicit Geometry-Based Methods

Explicit methods operate directly on geometric representations,
typically triangle meshes, to construct swept volume boundaries.
Analytical solutions exist for restricted motion types, notably the
Minkowski sum for pure translations, where Kaul et al. [Kau93]
demonstrated efficient computation of exact swept volumes for
straight-line paths. However, this approach does not accommodate
rotations or general spatial trajectories.

Early specialized approaches addressed specific motion types

with varying degrees of success. Korein et al. [Kor86] developed
techniques for single-axis rotations by identifying extreme ver-
tex trajectories and constructing piecewise-planar patches. Weld et
al. [WL90] established the foundational theoretical insight that the
union of all face-sweeps equals the complete swept volume. This
principle underpins many subsequent approaches but leaves unre-
solved the challenge of efficiently determining which patches con-
tribute to the outer boundary.

For general rigid motions, Abrams et al. [AA00] introduced a ro-
bust polyhedral sweeping algorithm that directly constructs bound-
ary representations. Their method approximates edge sweeps as
ruled surfaces by sampling the motion at discrete time steps and tri-
angulating the resulting patches. These patches are combined with
face instances at critical times, and a clipped arrangement is com-
puted to extract the outer boundary. Intelligent heuristics reduce
computational complexity by skipping interior edges. Although ef-
fective for moderate model complexities, this approach still re-
quires careful handling of geometric intersections and Boolean op-
erations.

Campen et al. [CK10] advanced explicit methods through adap-
tive discretization, subdividing arbitrary motions into piecewise-
linear segments and applying intelligent culling to eliminate redun-
dant surface pieces. Their method handles complex motions more
effectively than previous approaches, though combinatorial chal-
lenges remain significant in worst-case scenarios. More recently,
Von et al. [vDHS12] employed compressed voxelizations and De-
launay refinement to enhance computational efficiency, particularly
for industrial geometries.

Despite these advancements, explicit methods consistently face
fundamental challenges: robustly managing complex surface in-
teractions during arbitrary motion typically involves restrictive as-
sumptions or computational approximations that can compromise
accuracy. As motion complexity increases, the combinatorial ex-
plosion of potential feature interactions makes exact boundary cal-
culation increasingly difficult.

2.2. Implicit Field-Based Methods

Implicit methods represent swept volumes using scalar fields, typ-
ically signed distance functions (SDFs), to avoid explicitly track-
ing surface intersections. In this paradigm, the swept volume com-
prises regions where the distance to the moving object becomes
non-positive at any point during the motion.

Sourin et al. [SP96] pioneered functional representations of
swept volumes in 4D space-time. Their approach treats moving
objects as time-dependent implicit functions and constructs swept
volumes either by analytically uniting shape instances or by solving
directly for the envelope condition. While elegantly handling arbi-
trary motions and even deforming objects, this formulation incurs
significant computational costs.

A more practical implementation involves discretized sampling.
Schroeder et al. [SLL94] converted moving objects into distance
fields on 3D grids, progressively updating these fields as ob-
jects move to accumulate the swept volume. This “voxel stamp-
ing” method robustly manages self-intersections but suffers from
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(a) (b) (c) (d)
Figure 3: Distance Computation. (a) Given a model (purple circle as an example) and its sweeping trajectory, if we could compute the
distance from any spatial point (exemplified by the red point) to the resulting swept volume, we would be able to construct the distance field.
However, this is extremely challenging without the explicit swept volume result. (b) Exploiting the relativity of motion, we invert the motion
perspective: the model remains stationary while the query point traces an inverse trajectory. The red point lies inside the swept volume if
and only if some point along its inverse trajectory lies inside the static model. The distance from the red point to the swept volume can be
determined through inverse analysis of trajectory-to-model distances. (c) For complex motions, we partition the inverse trajectory temporally
and assume linear motion within each small interval, enabling efficient computation through inverse analysis of segment-to-model distances
as detailed in Section 4.1 (d) Based on inverse motion analysis and linear approximation, we obtain the distance field for the swept volume.
Note that this illustration shows a single distance field for demonstration; in practice, we employ a multi-field strategy where each distance
field corresponds to a swept volume from a short time interval.

resolution-dependent artifacts and high memory demands. Re-
searchers have mitigated these limitations through adaptive sam-
pling and hierarchical data structures, enhancing efficiency while
retaining the robustness advantages of field-based approaches.

The most significant recent advancement in implicit methods
comes from [SAJ21], who developed a numerical continuation ap-
proach in 4D space-time. Their method represents both the moving
object and its swept volume as SDFs, tracing the swept surface as
connected solution curves in spacetime. However, these 4D space-
time methods fundamentally require implicit function representa-
tions as input, significantly limiting their practical use in domains
where explicit geometric representations dominate. Furthermore,
computing distances to swept volumes of complex geometries un-
dergoing intricate motions can encounter optimization difficulties,
such as susceptibility to convergence to local minima, which un-
dermines theoretical correctness guarantees.

3. OVERVIEW

Our method addresses two fundamental challenges in swept vol-
ume computation: (1) efficiently calculating the distance from a
point to the swept volume, and (2) accurately preserving fine geo-
metric details that emerge during the sweeping process.

To tackle the distance computation challenge, we invert the con-
ventional perspective on motion analysis. Instead of tracking ob-
jects as they move through space, we keep the object fixed and an-
alyze the inverse trajectories of spatial points. This transformation
simplifies the complex problem of computing distances to swept
volumes into the more manageable task of measuring distances
between a static object and individual point trajectories, thereby
providing a robust foundation for our extraction method. Figure 3
illustrates this concept through a 2D example for intuitive under-
standing.

To address the challenge of detail preservation, we employ tetra-
hedral discretization combined with a multi-field representation

strategy. Unlike traditional methods that maintain a single scalar
field within each element, our approach preserves multiple distance
fields per tetrahedron—each corresponding to a swept volume seg-
ment generated during a specific time interval. To extract the fi-
nal swept surface from these multiple fields, we introduce four-
dimensional incremental cutting, processing the lower envelope of
these fields in higher-dimensional space. This multi-field approach
effectively captures intricate geometric features at trajectory inter-
sections, overcoming the limitations inherent in single-field meth-
ods.

Section 4 presents our two core algorithms: distance compu-
tation via inverse motion and isosurface extraction using four-
dimensional incremental cutting. Section 5 details the full imple-
mentation pipeline, demonstrating how these components effec-
tively balance computational efficiency with geometric precision.

4. METHOD

4.1. Distance Computation via Inverse Motion

Computing the signed distance from an arbitrary point to the swept
volume boundary constitutes a fundamental operation in swept vol-
ume extraction. However, given a short time interval [t0, t1] and a
query point q ∈ R3, determining the distance from q to the swept
volume of modelM without explicitly constructing the swept vol-
ume presents significant computational challenges, as illustrated in
Figure 4(a). In this subsection, we focus on scenarios with suffi-
ciently short time intervals, while longer time intervals requiring
piecewise linear approximation will be addressed in Section 5.

Motion Inversion. To determine the spatial relationship between
a point and a swept volume we invert the conventional perspective
on motion to establish a more tractable computational framework.
Since motion is inherently relative, we can reformulate the problem
by fixing the object’s position and treating the static query point q
as undergoing inverse motion, thus generating a trajectory through
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(b)

t0 t1

(c)

t0 t1

Figure 4: Illustration of our relative motion analysis for short time
intervals. (a) Generate the swept volume by moving the object
along the specified trajectory. (b) Keep the object stationary and
move the observation point p along the reverse trajectory. (c) Ap-
proximate the short, curved trajectory with a straight-line segment.
This reduces the determination of whether p lies within the swept
volume to a simpler intersection test between the straight-line seg-
ment and the original stationary object. Note that we illustrate the
concept using simple motion within a short time interval here for
demonstration purposes. For longer time intervals or complex mo-
tions, we subdivide the time period into finer segments and assume
linear inverse trajectories within each segment, as shown in Fig-
ure 8.

space (Figure 4(b)). Formally, if we define a continuous transfor-
mation function f(t) : [t0, t1] → SE(3) that maps time to a rigid
transformation matrix, then the position of model M at time t is
given byMt = f(t)M.

Under our inverted perspective, the query point’s trajectory can
be expressed as:

q(t) = f−1(t)q, t ∈ [t0, t1] (1)

A critical observation is that a point lies inside the swept volume
if and only if its inverse trajectory intersects the static model—an
exact correspondence that forms the theoretical foundation of our
approach. Based on this principle, we can determine the distance
from q to the swept volume ofM during [t0, t1] through distance
analysis between the trajectory of q(t) and the static modelM.

Linear Trajectory Approximation. For sufficiently small time
intervals [t0, t1], the query point’s motion can be approximated as
linear, forming a line segment L(t0, t1) connecting the positions at
the interval endpoints:

L(t0, t1) = q(t0)q(t1) = {λq(t0)+(1−λ)q(t1)|λ ∈ [0,1]} (2)

As depicted in Figure 4(c), this simplification transforms our prob-
lem into computing the distance from line segment Lq to the static
modelM:

d(q,SweepVol(M, [t0, t1]))≈ min
p∈L(t0,t1)

d(p,M) (3)

where d denotes the signed Euclidean distance.

This transformation provides a computationally efficient approx-
imation that preserves the essential geometric characteristics of the
swept volume with high fidelity. The trajectory-based formulation

significantly simplifies the computation process while maintaining
the robustness necessary for accurate swept volume reconstruction.

Note that we assume [t0, t1] represents a very short time inter-
val here, allowing the inverse trajectory to be approximated with a
single line segment. In practice, the complete temporal motion is
divided into multiple short intervals, with each inverse trajectory
segment assumed to be linear, as detailed in Section 5.1.

(a)

(b)

(c)

Figure 5: Multiple distance field representation in our approach. (a)
Input model and motion trajectory. (b) Complete swept volume. (c)
The entire motion is temporally partitioned into multiple segments,
with each segment generating a partial swept volume. Each par-
tial swept volume contributes a distance field, illustrated here with
three segments providing three distinct distance fields to the tetra-
hedron in the discretization. In practice, finer temporal discretiza-
tion is employed.

4.2. 4D Incremental Cutting for Isosurface Extraction

Isosurface extraction from implicit fields is a fundamental task
in computational geometry [WMW86, dALJ∗15]. Traditional iso-
surface extraction methods such as Marching Cubes [LC87] and
Dual Contouring [JLSW02] operate on scalar fields where a sin-
gle distance value is stored at each vertex of a spatial tessella-
tion. These approaches process each volumetric element where the
zero-isosurface passes through, using the distance values at element
vertices (and potentially gradient information) to reconstruct sur-
face fragments. However, a significant limitation of these conven-
tional methods is their fundamental assumption of surface simplic-
ity within each element, which renders them inadequate for captur-
ing complex geometric features and intricate surface structures that
emerge in swept volumes, particularly at trajectory intersections.

To overcome this limitation, our method employs tetrahedral tes-
sellation of the computational domain and, critically, maintains
multiple distance fields within each tetrahedron. Each of these
fields corresponds to the signed distance field of a swept volume
generated by modelM during a different time interval of its mo-
tion. As shown in Figure 5, the complete trajectory is divided into
three segments, with the swept volume formed by each trajectory
segment providing a separate distance field for the tetrahedron.

Let us denote the swept volume of modelM during time interval
[ts

i , t
e
i ] as SVi(M). For a tetrahedron t, we denote the set of distance

fields as {πi}m
i=1, where each πi corresponds to the signed distance

field to SVi(M).

Following the approach introduced in [WSW∗25,XWX∗22], we
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(a) (b) (c) (d) (e)

iso=0

Figure 6: Feature preservation through multiple distance fields and
incremental cutting in 2D swept volume extraction. Taking the
highlighted triangle as an example, it stores two distance fields
from swept volumes during different time segments, with trajec-
tory segments from different time periods illustrated and contribut-
ing segments marked in red. (a) Original triangle with multiple dis-
tance fields defined within. (b) Unbounded triangular prism formed
by extending the triangle infinitely along the z-axis. (c,d) Progres-
sive incremental cutting operations using hyperplanes representing
individual distance fields, where the height corresponds to distance
field values, resulting in a lower envelope. (e) Intersecting the re-
sulting prism with the z = 0 plane and projecting the intersection
curve back to 2D space to obtain the zero-contour within the trian-
gle.

assume linear variation of each distance field within the tetrahe-
dron t. Specifically, each distance field πi is encoded by four values
πi = {d1,i,d2,i,d3,i,d4,i}, where dk,i represents the signed distance
from the k-th vertex of the tetrahedron to SVi(M). For any point
x within t with barycentric coordinates (v1,v2,v3,v4), the signed
distance from x to SVi(M) can be approximated through linear
interpolation:

πi(x) = v1d1,i + v2d2,i + v3d3,i + v4d4,i (4)

The actual distance field within t, accounting for all component
fields, is determined by taking the minimum value across all dis-
tance fields:

d(x) = min
i∈{1,2,...,m}

πi(x) (5)

Our goal is to compute the zero-isosurface of this combined dis-
tance field. For easier understanding, we consider a simplified 2D
case. Figure 6 illustrates this concept through a 2D example for
intuitive understanding, where the motion time is divided into mul-
tiple segments, with each segment’s swept volume generating a dis-

tance field computed using the approach shown in Figure 4. In this
scenario, multiple distance fields exist within the highlighted tri-
angle, with each field visualized as a plane in 3D space where the
z-axis represents the interpolated distance value at each point. We
perform incremental linear cutting operations on an unbounded tri-
angular prism (whose base is the original triangle, extending in-
finitely upward and downward) using these planes, continuously
updating the lower envelope. The zero-contour is then obtained by
intersecting this lower envelope with the z = 0 plane and projecting
the resulting intersection curve back to the 2D domain.

Extending this approach to 3D, we implement incremental cut-
ting in 4D space to extract the zero-isosurface of the distance field,
following the approach described in [WSW∗25]. Each tetrahedron,
along with its associated distance fields, defines a set of hyper-
planes in 4D space. By computing the lower envelope of these hy-
perplanes and intersecting it with the zero-hyperplane (where the
distance equals zero), then projecting the result back to 3D space,
we obtain the zero-isosurface structure within the tetrahedron. This
4D incremental cutting approach faithfully captures complex ge-
ometric features generated during the object’s motion, including
sharp features and intricate surface structures that would otherwise
be lost with traditional isosurface extraction methods. Algorithm 1
presents the pseudocode.

Algorithm 1 Isosurface Extraction via 4D Incremental Cutting

Require: Tetrahedron τ, Distance fields {π1,π2, . . . ,πm} stored in
τ

Ensure: Swept volume surface within tetrahedron τ

1: Initialize 4D prismatic structure P with base τ and infinite
height range (−∞,+∞) in w-dimension

2: for each distance field πi in {π1,π2, . . . ,πm} do
3: Construct 4D hyperplane Hi from distance values of πi at

tetrahedron vertices
4: Cut P by hyperplane Hi and retain the portion below Hi

(lower envelope)
5: end for
6: Intersect the final lower envelope structure P with hyperplane

w = 0
7: Extract intersection surface S between w = 0 hyperplane and

the lower envelope
8: Project surface S back to 3D space to obtain swept volume

boundary within τ

9: return Swept volume surface mesh in τ

5. IMPLEMENTATION

Our implementation consists of three phases:

• Spatiotemporal Discretization: We partition the spatial domain
into tetrahedral elements and divide the motion into small time
intervals that support our linear trajectory approximation.

• Distance Field Propagation: For each time interval, we prop-
agate distance fields from seed tetrahedra throughout the tetra-
hedral discretization using a competition mechanism, ensuring
each tetrahedron receives the necessary fields for isosurface ex-
traction.

© 2025 The Author(s).
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• Swept Volume Extraction: We apply four-dimensional incre-
mental cutting to each tetrahedron independently, converting
multiple distance fields into a coherent swept volume boundary.

We now describe each component of this pipeline in detail.

(a) (b)
Figure 7: Spatial discretization. (a) A cube subdivided can be into
five tetrahedra. (b) Tetrahedral tessellation of the computational do-
main where we first partition space into uniform cubes, then subdi-
vide each cube as shown in (a).

5.1. Spatiotemporal Discretization

Our method employs discretization in both spatial and temporal di-
mensions to facilitate subsequent computational operations. This
discretization strategy establishes the foundation for our swept vol-
ume computation framework.

Spatial Discretization. We utilize tetrahedral tessellation to dis-
cretize the computational domain. Specifically, we first partition the
solution space using uniform cubic elements, then subdivide each
cube into five tetrahedra as illustrated in Figure 7(a). Through care-
ful arrangement, we maintain spatial consistency across the tetra-
hedral mesh. Figure 7(b) presents an example of our tetrahedral
tessellation applied to a computational domain.

Temporal Discretization. In the temporal dimension, we divide
the entire motion time interval into N segments. Within each tem-
poral segment, we assume the inverse trajectories of spatial points
can be well-approximated as linear segments, as shown in Fig-
ure 8. This piecewise linear approximation is consistent with the
motion perspective inversion described in Section 4.1 and allows
us to handle complex motion paths while maintaining computa-
tional efficiency. The resolution of this temporal discretization can
be adjusted based on the complexity of the original motion and the
desired accuracy of the final swept volume representation.

5.2. Spatial Propagation of Piecewise Linear Motion Distance
Fields

We consider a normalized motion time interval [0,1] discretized
into N segments, with each segment spanning [ti, ti+1]. For model
M, the swept volume formed during time interval [ti, ti+1] is de-
noted as SV(M, ti, ti+1). Each segment-specific swept volume gen-
erates a distance field throughout the computational domain, with
the complete swept volume defined by taking the minimum value
among all these fields at each point.

Figure 8: Temporal discretization. The green model remains sta-
tionary while orange curves show inverse trajectories of spatial
points. Within each discrete time interval, these trajectories are ap-
proximated as linear segments.

Algorithm 2 Line Segment to Model Distance Query

Require: Line segment L = {p0, p1}, ModelM
Ensure: Signed distance d

1: if line segment L lies completely outside modelM then
2: d← distance from L toM using FCPW library
3: else
4: Extract the portion of L that lies insideM as Linterior
5: Sample 10 evenly distributed points along Linterior
6: d←+∞
7: for each sampled point p do
8: Compute signed distance dp from p toM
9: d←min(d,dp)

10: end for
11: end if
12: return d

To compute distances from points to these swept volumes, we
employ the trajectory-based approach described in Section 4.1,
which reduces to analyzing the relationship between line seg-
ments and the static model. According to Equation 3, when the
line segment lies completely outside the model, the minimum dis-
tance from all points on the segment to the model equals the
segment-to-model distance, which we compute using the FCPW
library [Saw21]. However, when portions of the segment lie inside
the model, we discretize the interior portion along the segment into
sample points, compute the signed distance from each point to the
model, and take the minimum signed distance. This discretization
approach is necessary because we require the minimum signed dis-
tance rather than the minimum absolute distance, and existing li-
braries cannot provide the required computation when segments lie
partially inside the model. Algorithm 2 presents the pseudocode
for line segment-to-model distance calculation. While this intro-
duces some approximation in the absolute distance values, the sign
of the distance remains correct, which is crucial for accurate in-
side/outside determination. In our experiments, we used 10 sample
points for this discretization.

As described in Section 4.2, within each tetrahedron, we rep-
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Input

Stamping

[SAJ21]

Ours

Figure 9: Visual comparison of swept volumes generated by our method against Stamping and [SAJ21] across different models and motion
types. Our method preserves sharp features while avoiding the zigzag artifacts present in the Stamping approach.

Algorithm 3 Distance Field Propagation for Swept Volume Com-
putation

Require: Tetrahedral mesh T , ModelM, Global motion function
f (t), N time intervals [ti, ti+1]

Ensure: Distance fields stored in each tetrahedron
1: Initialize empty priority queue Q for distance propagation
2: for each time interval [ti, ti+1] do
3: Randomly select fixed number of seed tetrahedra inside

M(ti)
4: for each seed tetrahedron τ do
5: Add propagation event (τ, [ti, ti+1]) to priority queue Q
6: end for
7: end for
8: while Q is not empty do
9: Extract top-priority event (τ, [ti, ti+1]) from Q

10: Compute distance field π within τ for swept volume during
time interval [ti, ti+1] using motion inversion

11: if π is not defeated by existing fields in τ and not all distance
values of π at vertices are positive then

12: Store π in the distance field list of τ

13: for each neighboring tetrahedron τ
′ of τ do

14: Add propagation event (τ′, [ti, ti+1]) to Q
15: end for
16: end if
17: end while

resent each distance field πi by four values corresponding to the
signed distances at its vertices: πi = d1,i,d2,i,d3,i,d4,i. To determine
which distance fields contribute to each tetrahedron, we adopt the

competition mechanism from prior work [XWX∗22]. For two dis-
tance fields πi and π j within tetrahedron t, we consider π j to be
defeated by πi if:

d1,i < d1, j and d2,i < d2, j and d3,i < d3, j and d4,i < d4, j. (6)

Our goal is to identify all non-defeated distance fields for each Use-
ful tetrahedron, which collectively define the local swept volume
boundary.

For each time interval [ti, ti+1], we select a fixed number of seed
tetrahedra that lie insideM(t) for some time t within this interval
and initialize them with the corresponding segment’s distance field.
These distance fields propagate to neighboring tetrahedra only if
they remain undefeated in current tetrahedron and not all four dis-
tance values at the tetrahedron vertices are positive (as fields with
all positive values contribute no meaningful information to swept
volume surface extraction within that tetrahedron). Each tetrahe-
dron stores all undefeated distance fields it receives during this pro-
cess, which collectively define its contribution to the swept volume
boundary. This propagation process is efficiently managed using
a priority queue, and the algorithm terminates when no distance
fields remain to be propagated. This approach ensures that all tetra-
hedra containing relevant portions of the swept volume receive their
appropriate distance fields. The detailed implementation of this
propagation strategy follows the approach described in [XWX∗22].
For better understanding, we provide the pseudocode for distance
field propagation in Algorithm 3.

© 2025 The Author(s).
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5.3. Isosurface Extraction

After determining all contributing distance fields for each tetra-
hedron, we extract the swept volume boundary using the four-
dimensional incremental cutting approach described in Section 4.2.
This process converts the multiple distance field representations
within each tetrahedron into a coherent surface representation of
the swept volume boundary.

Our implementation of the 4D incremental cutting procedure fol-
lows the approach presented in [WSW∗25], adapted to the spe-
cific context of swept volume computation. A key advantage of
our method is that isosurface extraction can be performed indepen-
dently for each tetrahedron, without inter-element dependencies.
This property makes the algorithm well-suited for parallel accelera-
tion, enabling efficient execution on multi-core CPUs. In our imple-
mentation, we exploit this parallelism to substantially reduce com-
putation time, particularly for complex models and motion paths
where many tetrahedra contain non-trivial swept volume contribu-
tions.

6. EVALUATION

6.1. Experimental Setting

Hardware Environment. Our algorithm was implemented in C++
on a computing platform equipped with a 3.4 GHz Intel Core i7-
14700K 20-Core CPU, 64 GB of memory, and Windows 11 oper-
ating system. We employed 28 threads for parallel acceleration dur-
ing the isosurface extraction phase using the OpenMP framework.
No post-processing smoothing was applied in our experiments.

Baseline Methods. We compared our approach against two repre-
sentative methods:

• Stamping: This method, commonly employed in applications
such as Adobe Medium, involves sampling the moving object at
discrete intervals. At each sample, a signed distance field (SDF)
representation is generated. These SDFs are combined by taking
the minimum value at each spatial location, followed by extract-
ing the zero-isosurface to form the swept volume boundary.

• [SAJ21]: This optimization-based approach calculates the min-
imal distance values at each spatial grid vertex throughout the
sweeping process, utilizing dual contouring to extract the final
swept volume surface.

Consistent discretization parameters were applied across all
methods. The Spacetime Numerical Continuation method requires
intermediate states for trajectory interpolation, while our method
and the Stamping approach need temporal discretization. We uni-
formly adopted a sampling rate of 50 time steps for all experiments.
Surface extractions were performed at a spatial resolution of 2563.

Additionally, we initialized distance field computations from 100
randomly selected seed tetrahedra within each relevant time in-
terval, subsequently propagating fields throughout the spatial dis-
cretization.

6.2. Comparisons

Visual Comparison. Figure 9 visually compares swept volumes
generated by our method against Stamping and [SAJ21] across

Table 1: Quantitative comparison for different methods. Bold val-
ues indicate optimal performance. HD and CD are normalized by
the bounding box diagonal length.

Stamping [SAJ21] Ours

CD (‰) ↓ 0.6801 0.1421 0.1345
HD (%) ↓ 1.199 0.680 0.645
Time (s) ↓ 181 88.3 80.0

various models and motion types. Due to varying input parameter
formats across different methods, we limit the motion to transla-
tion to maintain trajectory consistency. The Stamping method ex-
hibits noticeable zigzag artifacts due to discrete temporal sampling.
The method of [SAJ21], while maintaining temporal continuity via
optimization-based distance computations, fails to capture complex
geometric features due to its reliance on a single distance field. Our
method, employing motion perspective inversion and 4D incremen-
tal cutting, preserves geometric details effectively, achieving supe-
rior accuracy with reduced computation time.

Quantitative Comparison. For quantitative evaluation, we se-
lected a case with a known analytical solution: a sphere moving
along a circular trajectory (Figure 11). We sampled points directly
from the analytically defined swept surface to measure Chamfer
Distance (L1 CD) and Hausdorff Distance (HD). Table 1 summa-
rizes these metrics, demonstrating that our method outperforms
baseline approaches.

6.3. Time

The computational performance of our algorithm is governed by
two primary discretization parameters: spatial resolution and tem-
poral sampling density. To quantify their impact on algorithm effi-
ciency, we conducted a comprehensive performance analysis using
a dataset of 100 randomly selected geometric models under sim-
ple motions involving translation and rotation. We measured exe-
cution time across systematically varied parameter configurations
to characterize performance scaling properties. For spatial resolu-
tion experiments, we maintained a fixed temporal discretization of
50 intervals while varying the spatial grid density. Conversely, for
temporal discretization analysis, we established a constant spatial
resolution of 2563 voxels while adjusting the number of temporal
intervals. Figure 12 presents the empirical performance data, illus-
trating computational complexity as a function of these fundamen-
tal discretization parameters.

6.4. Ablation Study

Our method contains two critical hyperparameters: 1) The temporal
discretization parameter, determining the number of time intervals
for piecewise linear motion approximation. 2) The spatial resolu-
tion parameter, controlling the grid density for extraction. Addi-
tionally, we include swept volume computation times for all differ-
ent parameter settings.

Time Steps. Temporal discretization resolution directly influences
the fidelity of our piecewise linear approximation and consequently
the accuracy of computed swept volumes. Figure 13 illustrates the

© 2025 The Author(s).
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Figure 10: Diverse swept volume results generated by our algorithm for various geometric models undergoing different motion trajectories.

Figure 11: Swept volume generated by a sphere traversing a circu-
lar trajectory. This configuration yields an analytically defined sur-
face, facilitating quantitative evaluation through direct point sam-
pling without explicit construction of a reference model.

Figure 12: Performance with respect to spatial and temporal dis-
cretization. Results represent average computation times across 100
test models.

t : 26.478s t : 41.701s t : 55.905s t : 78.628s

t : 62.592s t : 113.781s t : 142.039s t : 157.657s

t : 53.415s t : 110.417s t : 119.773s t : 141.930s

1 5 10 20
Figure 13: Swept volumes computed at different temporal resolu-
tions with spatial resolution fixed at 2563.

resultant swept volumes at temporal resolutions of 1, 5, 10, and 20
discrete intervals. At minimal temporal subdivision, the piecewise
linear approximation becomes invalid as an accurate representation
of the continuous motion, resulting in substantial geometric devia-
tion from the theoretical surface. Progressive refinement of the tem-
poral discretization demonstrates convergent behavior toward the
analytical solution, with notable improvements in geometric conti-
nuity at inter-interval boundaries.

© 2025 The Author(s).
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Grid Resolution. Figure 14 presents swept volume extraction re-
sults at multiple spatial discretization resolutions:253, 503, 1003,
and 2563 voxels. Higher spatial resolution enables more precise
approximation of the continuous distance fields, resulting in im-
proved boundary representation and preservation of fine geometric
details that would otherwise be lost at coarser discretization levels.

t : 1.732s t : 6.503s t : 28.392s t : 188.728s

t : 1.199s t : 4.219s t : 18.795s t : 155.696s

t : 1.783s t : 5.261s t : 43.106s t : 221.014s

253 503 1003 2563

Figure 14: Extracted sweep volume at different spatial resolutions
with temporal resolution fixed at 50. Flat rendering is used to better
highlight the differences across resolutions.

Figure 15: Visual comparison across different temporal and spatial
discretization resolutions. Flat rendering is used to better highlight
the differences across resolutions.

Figure 15 demonstrates results in a 3×3 grid where each row
and column represents different spatiotemporal resolution settings.
Additional examples showcasing our method’s robustness with var-
ious models and motion patterns are provided in Figure 10.

7. LIMITATIONS AND FUTURE WORK

Our method currently has three primary limitations that represent
important directions for future research.

Temporal Discretization. Our method currently employs uniform
temporal discretization, dividing the entire motion into equally-
sized time intervals. This represents a significant limitation, as
it inefficiently allocates computational resources by treating pe-
riods of slow, smooth motion the same as rapid or complex mo-
tion phases. Adaptive temporal discretization would offer substan-
tial benefits—using fewer time segments during slow movements
where linear approximation is highly accurate, and employing finer
discretization during rapid motions where more precision is re-
quired. Such an approach could significantly improve both com-
putational efficiency and result quality while reducing artifacts at
segment boundaries.

Spatial Resolution. Similarly, our framework relies on uniform
spatial tessellation throughout the computational domain. This lim-
itation becomes apparent when considering that swept volume sur-
faces contain both geometrically complex regions requiring high
resolution and relatively flat areas where coarse tessellation would
suffice. Adaptive spatial discretization could potentially yield sub-
stantial performance gains by concentrating computational re-
sources in complex regions. However, this presents fundamental
challenges in our framework since we extract swept volume sur-
faces independently from each tetrahedron. Adaptive tessellation
would cause misalignment issues between adjacent elements with
different resolutions, leading to inconsistent surface reconstruction.
Investigating hybrid approaches that maintain surface consistency
while enabling selective spatial refinement represents an important
avenue for future research.

Complex Transformations. Our inverse trajectory analysis frame-
work assumes that a unified inverse transformation can be applied
to spatial points. However, when objects undergo scaling, anima-
tion, or deformation, different regions of the model exhibit distinct
motion behaviors, making unified inverse transformation impos-
sible. More complex motions such as animation and deformation
present fundamental challenges to our current approach. Extending
support for such transformations remains an important direction for
future work.

8. CONCLUSION

In this paper, we introduced a novel swept volume computation
framework leveraging motion perspective inversion and a multi-
field extraction strategy. By fixing the object and analyzing inverse
point trajectories, our approach simplifies the complex problem of
trajectory analysis. Furthermore, our framework maintains multiple
distance fields within each tetrahedral element and utilizes four-
dimensional incremental cutting, effectively capturing intricate ge-
ometric features emerging during motion. Extensive experiments
across a variety of models and motion types validate the superior
effectiveness and efficiency of our proposed method compared to
existing approaches.

© 2025 The Author(s).
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