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Abstract

Computing offsets of curves on parametric surfaces is a fundamental yet challenging operation in computer-aided design and man-
ufacturing. Traditional analytical approaches suffer from time-consuming geodesic distance queries and complex self-intersection
handling, while discrete methods often struggle with precision. In this paper, we propose a totally different algorithm paradigm.
Our key insight is that by representing the source curve as a sequence of line-segment primitives, the Voronoi decomposition con-
strained to the parametric surface enables localized offset computation. Specifically, the offsetting process can be efficiently traced
by independently visiting the corresponding Voronoi cells. To address the challenge of computing the Voronoi decomposition on
parametric surfaces, we introduce two key techniques. First, we employ intrinsic triangulation in the parameter space to accurately
capture geodesic distances. Second, instead of directly computing the surface-constrained Voronoi decomposition, we decompose the
triangulated parameter plane using a series of plane-cutting operations. Experimental results demonstrate that our algorithm achieves
superior accuracy and runtime performance compared to existing methods. We also present several practical applications enabled by
our approach.
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1. Introduction

The offsetting operation of curves on surfaces (as illustrated in
Figure 1) is a fundamental yet challenging geometric operation in
computer-aided design and manufacturing, where both accuracy
and run-time performance are crucial. It has garnered significant
attention due to its wide range of applications, including surface
blending, surface coverage, and path planning [1, 2, 3]. Even if
the source curve is smooth and defined in a 2D plane, the result-
ing offset may include cusps. When the base domain is a curved
surface, the complexity increases due to the intrinsic curvature of
the surface geometry.

To be detailed, the challenges arise from the following aspects.
First, surface-constrained offsets require computing geodesic dis-
tances, but geodesic distances are significantly more computa-
tionally expensive than straight-line distances. Second, the off-
setting operation can be explained based on the Minkowski sum,
which essentially “expands” the source curve by a fixed distance
in every direction, creating a “thickened” version of the origi-
nal curve. Therefore, there may not exist a one-to-one mapping
between them, leading to cusps in the offset.

Current approaches typically employ a two-phase strategy:
initially generating raw offset curves via geodesic direction dis-
placement, followed by resolving self-intersections through geo-
metric operations. Although conceptually elegant, this bifurcated
approach introduces substantial practical challenges. The gener-
ation of raw offsets via numerical integration or iterative methods
imposes considerable computational cost, while the resolution of
self-intersections frequently exhibits numerical instability, espe-
cially in regions characterized by high curvature.

Moreover, despite geodesic computation being an intrinsic
property of parametric surfaces—independent of their spatial
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Figure 1: Offset curves on a spherical parametric surface. The source curve
(shown in pink) and its offset curves at two different distances (shown in cyan
and yellow, respectively) are illustrated on the spherical surface.

embedding—existing methods rarely leverage this intrinsic char-
acteristic. This deficiency presents an opportunity to develop
more principled approaches that operate directly on the surface’s
intrinsic geometry, thereby enhancing both computational accu-
racy and algorithmic efficiency.

In this paper, we propose a novel approach to geodesic curve
offsetting on parametric surfaces. Our method is built on two
key insights: First, we recognize that geodesic distance com-
putation is an intrinsic problem independent of the parametric
surface’s embedding. Consequently, we focus on the parametric
space with an induced metric rather than the embedded paramet-
ric surface. We extend existing geodesic distance computation
methods to calculate distances between arbitrary point pairs on
the parametric space. Second, we observe that when calculat-
ing offsets and Voronoi diagrams of several primitives, the offset
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of a specific primitive is constrained to its Voronoi cell. Based
on this observation, we discretize the source curve into multiple
segments, calculate the Voronoi diagram of these segments, and
then extract the offset of each segment within its corresponding
cell. Through these two insights, our approach achieves efficient
extraction and composition of complete offset curves while nat-
urally handling self-intersections.

The key innovations of our method are:

• Parameter Space Geodesic Computation: We propose
a novel approach that computes geodesics by operating
directly in the parameter space equipped with a surface-
induced metric.

• Voronoi-Guided Decomposition: Through theoretical
analysis of offset curves and Voronoi diagrams, we establish
that offset regions remain confined within their correspond-
ing Voronoi cells, enabling localized and parallel computa-
tion.

• No Specialized Self-Intersection Handling: Our method
does not require specialized handling for self-intersection
issues.

2. Releated Work

2.1. Geodesics Distance Calculation

Existing approaches for computing geodesics on parametric
surfaces can be broadly classified into three categories: analyti-
cal methods, numerical approaches, and discrete approximation
methods.

2.1.1. Analytical Methods
The analytical approaches, as presented by Do Carmo [4], of-

fer theoretically elegant solutions but encounter substantial prac-
tical limitations. These methods exhibit considerable complexity,
and closed-form solutions for geodesics cannot be derived for
general surfaces. This fundamental constraint has necessitated
the development of more pragmatic computational methodolo-
gies.

2.1.2. Numerical Methods
Numerical methods have gained widespread adoption in re-

cent decades. Beck et al. [5] computed geodesic paths on bicu-
bic spline surfaces using fourth-order Runge–Kutta methods. Pa-
trikalakis and Badris [6] examined geodesic curves on parametric
surfaces during their construction of offset curves on Rational B-
spline surfaces. Sneyd and Peskin [7] investigated geodesic path
computation on generalized cylinders employing second-order
Runge–Kutta methods. For shortest path problems, Maekawa [8]
introduced an approach based on relaxation methods utilizing fi-
nite difference discretization, while Kasap et al. [9] presented a
methodology for solving nonlinear differential equations through
finite-difference and iterative techniques.

2.1.3. Discrete Approximation Methods
The third approach involves first converting parametric sur-

faces into mesh surfaces and then applying mesh-based geodesic
computation methods. Many accurate discrete methods approach
geodesics or the shortest paths on tessellated surfaces [10, 11],
polygonal surfaces [12, 13] and triangular meshes [14, 15]. Re-
cent work [16] achieves efficient geodesic computation through

edge flipping operations, demonstrating significant computa-
tional performance. As comprehensively reviewed by Bose et
al. [17], these algorithms are differentiated based on theoreti-
cal time complexity and approximation ratio. Discrete geodesics
have been gaining attention as computers become increasingly
more powerful and discretized models become more prevalent
in geometric modeling. However, the discrete geodesics cannot
be computed directly on the original smooth surface, which lim-
its their application in scenarios requiring high accuracy, and the
conversion from parametric surfaces to mesh surfaces introduces
significant precision loss.

Despite the numerous existing approaches for geodesic com-
putation, it remains challenging to efficiently compute geodesic
distances between arbitrary points on parametric surfaces while
maintaining high accuracy for applications requiring fast query
responses.

2.2. Geodesic Offset Curve on Surface
The problem of computing offset curves has a long history

of development in geometric modeling and processing [18, 19,
20, 21], due to its essential role in applications such as tool-
path generation for CNC machining [22] and geometric toleranc-
ing. Since our work focuses on geodesic offset computation on
surfaces, we mainly review previous approaches for computing
geodesic offset curves.

The study of geodesic offset curves was pioneered by Pa-
trikalakis and Bardis [23], who introduced this problem to ge-
ometric modeling. Wolter and Tuohy [24] later revisited this
problem as a special case of approximating procedurally defined
curves on surfaces. Brunnet [25] investigated geodesic offsets
specifically on surfaces of revolution, reducing the problem to
solving zeros of complex integral functions. Due to the com-
putational complexity, these approaches typically employed the
Runge-Kutta scheme for efficient approximation of geodesic off-
set curves.

Ulmet [26] proposed two simplified alternatives to geodesic
offset computation. The first approach computes a planar off-
set curve in the parameter domain and maps it to the surface.
However, this method suffers from parametrization-dependent is-
sues - regions of the same size in the (u, v)-domain can map to
patches of considerably different sizes on the surface, leading
to non-uniform gaps between the curve and its offset. The sec-
ond method projects a spatial offset curve onto the surface, which
presents a non-trivial computational challenge. Tam et al. [27] at-
tempted to simplify this by intersecting the surface with the nor-
mal plane of the curve and then moving along the cross-sectional
curve by the offset distance. While conceptually simpler than
surface projection, this method proved unsuitable for generating
continuous offset curves on surfaces.

Beyond the basic offset computation, a significant challenge
lies in the handling of self-intersections. Most methods perform
trimming in the (u, v)-parameter domain [27] or in flattened pla-
nar domains for mesh surfaces [28, 29]. However, due to numer-
ical errors in offset curve sampling and the computational diffi-
culty in measuring geodesic distances on the surface, the offset
trimming can be highly unstable, particularly when offset curves
have tangential intersections. For applications requiring constant
scallop-height maintenance [30, 31, 32], the offset distance is
computed as a function d(t), with different formulations depend-
ing on each method’s approximation of local surface geometry.

Compared with the numerous research results in Euclidean
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spaces [33], there are relatively few studies on geodesic offset
computation for surfaces [25, 23, 34, 24], while most work on
geodesic offset curves has focused on polygonal surfaces such as
triangular meshes [35, 36, 37, 38]. These limitations in existing
methods motivate the need for more efficient approaches that can
handle geodesic offset computation directly on parametric sur-
faces while maintaining robust handling of self-intersections.

2.3. Intrinsic Triangulation

Intrinsic triangulation fundamentally differs from its extrinsic
counterpart by focusing solely on the intrinsic properties of the
surface, independent of any particular embedding (Figure. 2). It
can be completely characterized by three key components: (1)
the mesh connectivity describing how vertices are connected to
form triangles, (2) the lengths of edges connecting adjacent ver-
tices, and (3) the triangle inequality constraints that these dis-
tances must satisfy. These edge lengths and connectivity pat-
terns fully define the triangulation without reference to vertex
positions in any ambient space.

Figure 2: The input mesh (left) and its intrinsic triangulation (right, with differ-
ent intrinsic triangles shown in distinct colors). An intrinsic triangulation is fully
defined by its mesh connectivity and edge lengths, which satisfy triangle inequal-
ities, rather than depending on vertex positions in space.

Sharp et al. [39] introduced a novel data structure that effi-
ciently represents and manipulates such intrinsic triangulations.
This approach is particularly valuable for computational tasks
that rely only on intrinsic surface properties, such as geodesic
distance computation and vector field processing. For meshes
with poor quality elements that would typically hinder numerical
computations, intrinsic triangulation provides a unique solution
by improving mesh quality without altering the underlying ge-
ometry. This stands in stark contrast to traditional remeshing ap-
proaches, which inevitably must balance element quality against
geometric fidelity.

Furthermore, intrinsic triangulation offers several key advan-
tages in computational settings. For finite element methods, it
simultaneously provides accurate geometry representation and
high-quality elements for computation, since all geometric quan-
tities can be derived purely from edge lengths. Its ability to
maintain geometric fidelity while enabling more accurate dis-
cretization makes it especially suited for applications ranging
from geodesic computations to vector field processing. Most no-
tably, this approach eliminates the traditional trade-off between
mesh quality and geometric accuracy, offering a powerful tool for
processing geometrically complex or poorly tessellated surfaces.

3. Methods

3.1. Geodesic Computation via Parameter Space Triangulation

Computing geodesics on parametric surfaces is fundamentally
an intrinsic problem—it depends solely on the surface’s metric
structure, independent of the surface’s spatial embedding. How-
ever, most existing approaches fail to fully exploit this intrinsic
characteristic. A prevalent methodology discretizes the paramet-
ric surface into a triangle mesh before applying mesh-based algo-
rithms such as the edge flipping method of Sharp and Crane [16],
as illustrated in Figure 3 (a)(b). While this remeshing approach
facilitates efficient computation, it introduces unnecessary dis-
cretization artifacts by compromising the surface’s intrinsic met-
ric structure.

(a) (b)

(c) (d)
Figure 3: Computing geodesic paths between a start point (red) and end point
(green) on a parametric surface. A common approach is to first discretize
the parametric surface into a triangle mesh (a) and then apply mesh-based
geodesic computation methods such as [16] that use edge flipping. However,
this discretization process introduces additional errors that affect the accuracy of
geodesic distance computations. Instead, we directly compute an intrinsic trian-
gulation of the parametric surface in the parameter domain (c), where each edge
is assigned a length corresponding to the geodesic distance between its endpoints
on the surface. The geodesic distance can then be accurately computed through
intrinsic triangle flipping operations (d) directly in the parameter space. The color
gradient visualizes the geodesic distance field from the start point, with contour
lines representing equidistant paths.

Rather than compromising accuracy through mesh approxi-
mation, we propose to operate directly in the parameter space
while preserving the intrinsic geometric properties of the surface.
For the parametric space, we introduce an induced metric—the
distance between any two points in the parametric space is de-
fined as the shortest paths distance between their correspond-
ing points on the parametric surface. For computational conve-
nience, we construct an intrinsic triangulation of the parametric
space, where edge lengths are determined by the induced metric.

We then extend the intrinsic edge-flipping algorithm of Sharp
and Crane [16] to operate within our metric-equipped parame-
ter space, as shown in Figure 3(c)(d). This extension allows
the computation of geodesic distances between arbitrary points
through intrinsic triangle flipping operations directly in the pa-
rameter domain.
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The theoretical foundation of our method is predicated on the
observation that this metric space naturally admits triangulations
where edges represent shortest paths. We establish the following
fundamental property to validate our parameter space construc-
tion:

Theorem 1. For any three points p1, p2, and p3 in the parameter
space equipped with the induced metric, their distances satisfy
the triangle inequality:

dg(p1, p2) + dg(p2, p3) ≥ dg(p1, p3)

where dg(pi, p j) denotes the shortest path distance between the
surface points corresponding to parameters pi and p j.

Proof:. Let γ12 and γ23 be the shortest paths connecting p1 to p2
and p2 to p3 respectively. Let γ13 be the shortest path from p1 to
p3, as shown in Figure 4. Then:

• The concatenated path γ12 ∪ γ23 forms a valid path from p1
to p3.

• By definition, γ13 is the shortest path between p1 and p3.

• Therefore: dg(p1, p3) = length(γ13) ≤ length(γ12) +
length(γ23) = dg(p1, p2) + dg(p2, p3)

□

p1

p2

p3

Figure 4: Intrinsic Triangle on a Parametric Surface. The geodesic distance be-
tween points pi and p j is denoted by dg(pi, p j). The three geodesic paths form-
ing the edges of the intrinsic triangle satisfy the triangle inequality, allowing the
triangle to be developed onto a plane while preserving the lengths of its three
boundary edges.

This triangle inequality ensures that the metric space is well-
defined and provides theoretical justification for the continuity of
the distance field, which is essential for our subsequent process-
ing. Most significantly, it guarantees the validity of our triangu-
lation and the convergence of the edge-flipping operations. By
operating with this induced metric structure rather than a mesh
approximation, our method preserves both the computational ef-
ficiency of edge-flipping and the precise metric properties of the
original surface.

3.2. Voronoi-Guided Offset Computation
There exists a fundamental relationship between Voronoi dia-

grams and offset operations. Consider a set of disjoint primitives
in a two-dimensional space and their generalized Voronoi dia-
gram. When computing a global offset structure from multiple
primitives, we observe a significant property: within the final off-
set structure, the portion originating from any specific primitive
remains confined to that primitive’s Voronoi cell. This observa-
tion can be formalized as follows:

Theorem 2. Let {Pi} be a set of primitives with corresponding
Voronoi cells {Vi}, and let O(Pi, d) denote the d-offset curve of
primitive Pi in the global offset structure. Then:

O(Pi, d) ⊆ Vi

Proof:. Consider two primitives Pi and P j with Voronoi cells Vi
and V j respectively. Suppose, for contradiction, that there exists
a point x ∈ V j that belongs to the offset curve of primitive Pi. By
definition of the offset, d(Pi, x) = d where d is the offset distance.
However, since x lies in V j, we have d(P j, x) < d(Pi, x) = d,
which contradicts the definition of the offset.

As illustrated in Figure 5, the red point on the offset result
within the Voronoi cell of the triangular primitive cannot be gen-
erated by offsetting either the circle or the square primitive. □

Figure 5: Three primitives (circle, triangle, and square, colored in purple) with
their Voronoi diagram (colored in orange) and offset results (colored in blue). The
offset region formed by each primitive is confined within its respective Voronoi
cell.

This theoretical foundation suggests an efficient approach for
computing offsets: initially construct the Voronoi diagram of the
primitives, then extract the offset structure for each primitive in-
dependently within its corresponding Voronoi cell. This divide-
and-conquer strategy can substantially reduce the computational
complexity of offset operations in specific scenarios. In our con-
text, we can partition the source curve into distinct segments and
compute their Voronoi diagram on the parametric space. The off-
set curves can subsequently be extracted independently within
each Voronoi cell and amalgamated to form the complete offset
structure.

4. Implementation

The key concept of our method is to discretize the source curve
into segments, represent each segment using a point, and then
extract the offset curve of each segment within its correspond-
ing Voronoi cell. Our algorithm is structured into three distinct
phases:

1. Constructing Intrinsic Triangulation: Discretize the source
curve into segments and represent them as points, then con-
struct an intrinsic triangulation of the parameter space that
preserves the surface’s metric properties.

2. Voronoi Diagram Computation: Compute the Voronoi di-
agram of the representative points in the parameter space
under the induced metric.

3. Offset Curve Extraction: Extract the offset curve from each
Voronoi cell. Merge these individual components to obtain
the final result.

In the following sections, we present each phase in detail.
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4.1. Constructing Intrinsic Triangulation

Our approach begins with preprocessing both the input curve
and the underlying parameter space. To handle curves of ar-
bitrary complexity, we first partition the input curve into small
segments and represent each segment with a representative
point. This discretization strategy preserves the curve’s geomet-
ric structure while enabling efficient geodesic distance compu-
tation. With this discretized representation in hand, we proceed
to construct a triangulation in the parameter space equipped with
the surface-induced metric.

Consider a parametric surface defined over the domain u ∈
[u0, u1], v ∈ [v0, v1]. Our method commences by establishing a
uniform triangulation of the parameter domain. This triangula-
tion constitutes the fundamental infrastructure for geodesic com-
putations, where the distance between any two points p and q in
the parameter space is characterized as the geodesic distance be-
tween their corresponding surface points. For the initial triangu-
lation where edges exhibit relatively minimal length, we approx-
imate this geodesic distance between p = (u1, v1) and q = (u2, v2)
utilizing the arc length along the surface:

L =
∫ 1

0

√
E(u2 − u1)2 + 2F(u2 − u1)(v2 − v1) +G(v2 − v1)2dt

(1)
where E, F, and G represent the coefficients of the first funda-
mental form. This approximation demonstrates high accuracy
for infinitesimal distances and provides the initial metric struc-
ture essential for our triangulation methodology.

Furthermore, to enable geodesic distance computation be-
tween any vertex and the source curve, we incorporate the repre-
sentative points of the curve segments into the parameter space
triangulation through incremental insertion and triangle subdivi-
sion.

4.2. Voronoi Diagram Computation in Parameter Space

Voronoi diagrams have found extensive applications in com-
putational geometry, robotics, and manufacturing due to their
ability to partition space based on proximity relationships [33,
40, 41, 42]. While numerous algorithms exist for comput-
ing Voronoi diagrams in various contexts, we adapt the Sur-
faceVoronoi algorithm proposed by Xin et al. [43] to compute
the Voronoi diagram in the parametric space, which provides a
flexible framework for computing Voronoi diagrams on surfaces
with arbitrary distance metrics. This approach effectively decou-
ples the distance computation method from the Voronoi diagram
construction, making it particularly suitable for our parameter
space with its induced metric structure.

The algorithm consists of two main stages: the distance field
propagation stage and the incremental half-plane cutting stage.
In the propagation stage, we modify the original approach by
replacing the distance computation with our geodesic distance
calculation method described in Section 3.1. This ensures that
the propagation of distance fields throughout the parameter space
accurately reflects the intrinsic geometry of the surface. Addi-
tionally, we constrain the propagation region, preventing it from
extending to areas that are significantly more distant from the
source curve compared to the specified offset distance.

An example of a parametric surface and its Voronoi diagram
for discrete curve points in parameter space is illustrated in Fig-
ure 6. Comprehensive algorithmic details regarding the construc-
tion and computational implementation of this diagram are pre-
sented in [43].

Figure 6: Voronoi diagram (red) of discretized curve points in parameter space
under the parametric surface-induced geodesic metric. Note the substantial dif-
ferences from conventional Euclidean-based 2D Voronoi diagrams. Background
coloration indicates the geodesic distance field from the curve, black lines repre-
sent the parameter space triangulation, and white contours show geodesic isolines
(equivalent to offset curves at varying distances).

4.3. Offset Curve Extraction

To enable per-cell extraction of offset curves, we integrate the
Voronoi diagram with the original triangulation, creating a re-
fined mesh structure. We modify the standard surface Voronoi
algorithm to directly output an integrated triangular mesh rather
than Voronoi edges. This modification avoids a separate re-
triangulation step while ensuring the final mesh incorporates both
Voronoi boundaries and original mesh edges. The resulting mesh
maintains the critical property that each triangular face belongs
to exactly one Voronoi cell, ensuring all points within a face are
geodesically closest to that cell’s site.

(a) (b) (c) (d)

Figure 7: Extracting the offset curve from a triangle. (a) Unfold the triangle
onto a plane along its edges, forming an infinitely high prism with this triangle as
the base. (b) Cutting the prism with the plane determined by the distance field.
(c) Incrementally cutting the prism with planes at a constant height d, where d
equals to the offset distance. Project the intersection segments onto the triangle
to obtain the offset curve.

With the integrated mesh structure in place, we proceed to con-
struct a discrete distance field by computing geodesic distances
at each vertex. For vertices from the original triangulation, we
compute the geodesic distance from each vertex to the site of the
Voronoi cell it belongs to. For Voronoi vertices, which are newly
introduced points at the intersection of multiple Voronoi cells,
we compute geodesic distances to each adjacent Voronoi cell’s
site on the source curve.While these vertices should theoretically
be equidistant from adjacent sites, our approximate Voronoi di-
agram computation may yield slightly different values. For con-
sistency, we assign each Voronoi vertex the minimum geodesic
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Ours

[38]

Figure 8: Visual comparison of offset curve computation between our method (bottom) and [38] (top) on various parametric surfaces. Our method demonstrates more
accurate alignment with theoretical offsets and better preservation of geometric features. The original source curves are shown in red, with offset curves in blue.

distance from among its adjacent cells’ sites, ensuring every ver-
tex in our modified mesh has a well-defined geodesic distance
value.

Since each triangle in our refined mesh belongs to exactly
one Voronoi cell and has well-defined distance values at its ver-
tices, we can extract offset curves independently for each trian-
gle. By linearly approximating the distance field within each tri-
angle, we transform a complex geometric problem into a simple
plane-cutting operation. This localization enables parallel pro-
cessing and eliminates the need for global self-intersection han-
dling. With the distance field established at every vertex, the
extraction procedure for each triangle is straightforward:

1. We isometrically develop each triangle onto a plane and
construct a vertical prism that extends infinitely in both di-
rections.

2. We create a sloped plane where the height at each vertex
equals its geodesic distance to the source curve. This plane,
representing the linearly interpolated distance field, inter-
sects and cuts the prism, creating a half-space envelope.

3. By further cutting this remaining portion with a horizon-
tal plane at height equal to the specified offset distance, we
obtain the 3D intersection curve which, when projected ver-
tically back onto the 2D triangle domain, forms the local
offset curve segment.

Figure 7 illustrates this extraction process. By combining
these independently extracted segments, we form the complete
offset curve that naturally respects the topology of the distance
field.

5. Evaluation

5.1. Experimental setting

We implemented our algorithm in C++ on a platform with a
2.8 GHz AMD 5050X processor running Windows 10. We mod-
ified the code from [16] to meet our requirements for geodesic
computation on parametric surfaces.

5.2. Comparison with the State of the Art

In this paper, we compare our method with Xin et al.[38],
which is designed for computing offset curves on triangulated
mesh surfaces. We do not compare with analytical methods for
parametric surfaces, as these are typically applicable only to spe-
cific surface types and often lack publicly available implementa-
tions. Our method requires intrinsic triangulation of the paramet-
ric space, while Xin et al.[38] requires extrinsic triangulation of
the parametric surface. For a fair comparison, we ensure that the
number of triangulations in both methods remains consistent.

Visual comparison. We compare our method with Xin et al. [38]
on five complex models. The experimental results are shown in
Figure 8. When the offset distance exceeds the curvature radius
of the input curve, distinct feature angles, or cusps, appear in
the offset curve. The ability to generate cusps is a key indica-
tor of the quality of an offset result. As seen in the figure, our
method clearly produces cusps, whereas Xin et al.’s method does
not. This is because our approach partitions the curve into differ-
ent regions, computes the offsets, and extracts them individually.
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Figure 9: Gallery of offset curves computed using our method on various parametric surfaces. For each model, the source curve is shown in red, with offset curves in
blue.

Surface
[38] Ours

HD (×10−3) CD (×10−3) HD (×10−3) CD (×10−3)

Sphere 7.59 2.11 0.71 0.29
Cylinder 8.33 0.15 0.76 0.02

Table 1: Quantitative comparison of offset curve accuracy using one-directional
Hausdorff Distance (HD) and Chamfer Distance (CD).

Each Voronoi cell captures the local characteristics of the original
curve, leading to a more accurate approximation of the distance
field. In contrast, methods that extract offsets only within trian-
gles lack this region-specific information and thus cannot achieve
the same level of accuracy. Figure 9 displays additional results
obtained using our method.

Quantitative comparison. Traditional surfaces cannot support
precise geodesic distance calculations. To quantitatively com-
pare our method with [38], we selected spherical and cylindri-
cal surfaces for testing. Using identical input curves and off-
set distances, we compared our method with [38]. The results
are shown in Figure10. We sampled 100K points from both the
parameter curve and the computed offset curve, and calculated
the one-directional Hausdorff distance and Chamfer distance. As
shown in Table 1, our method demonstrates superior accuracy
across these metrics.

Performance comparison. Table 2 presents the computational
times for our method and [38] on the models shown in Figure 8.
Our method demonstrates a clear advantage in terms of compu-
tational efficiency. This performance gain is primarily due to our
approach for computing geodesic distances, which directly uti-
lizes intrinsic edge-flipping operations. Compared to traditional

exact geodesic computations, our method achieves significantly
faster processing times.

Surface #V #F
Time (s)

Ours [38]

Bell Curve 25k 50k 1.173 1.926
Spiral Paraboloid 26k 51k 0.981 2.184

Torus 50k 99k 1.744 4.623
Circular Wave 34k 66k 1.291 2.782

Bivariate Sine Wave 40k 80k 2.116 4.741

Table 2: Runtime performance comparison between our method and [38] on mod-
els shown in Figure 8. #V and #F represent the number of vertices and faces in
the triangulation, respectively. In this experiment, the curve was discretized into
2K segments.

5.3. Time Complexity Analysis

To evaluate the algorithm’s computational efficiency, we con-
ducted two experiments examining how discrete segment count
and offset distance affect processing time.

Number of Discrete Segments. We discretized the input curve
into varying numbers of segments while maintaining a constant
offset distance of 0.3 and 50,000 intrinsic triangles. Figure 11
illustrates the results. The computation time increases linearly
with the number of sampled points, demonstrating the algo-
rithm’s scalability even as input complexity grows.

Offset Distance. Our second experiment investigated the rela-
tionship between computational time and offset distance using
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[38] Ours

Figure 10: Visual comparison of offset curves on cylindrical (top) and spherical
(bottom) surfaces. Left: results by [38]; right: our results. Original curves are
shown in red, with offset curves in blue.

50,000 intrinsic triangles and 2,000 segments. Figure 12 displays
these results. Processing time increases gradually with larger off-
set distances because the distance field’s propagation stage must
cover more extensive surface regions. Nevertheless, the algo-
rithm maintains efficient performance across varying offset dis-
tances, exhibiting robust scalability with increasing task com-
plexity.

5.4. Ablation Study
The accuracy of our results is primarily determined by the

number of discrete segments, with minimal dependency on the
number of intrinsic triangles. This is because after computing
the Voronoi diagram, we embed it into the final triangulation, ef-
fectively refining the input triangular mesh. Consequently, the
initial intrinsic triangulation has little impact on the final result.
Therefore, we focused our analysis solely on how the number
of segments affects our results. Additionally, we compared the
accuracy of geodesic distance computed using our intrinsic tri-
angle flipping method against those obtained by discretizing the
parametric surface into a triangular mesh on a spherical surface.

5.4.1. Variable Discretization Precision
Figure 13 demonstrates our results under different discretiza-

tion precisions of the input curve. Visual comparison reveals that
at lower discretization densities, the offset results clearly exhibit
a segmented appearance composed of multiple distinct arc seg-
ments. This occurs because fewer discrete points are insufficient
to accurately represent the source curve. As sampling density
increases, results become increasingly accurate. When our sam-
pling number reaches approximately 200, we achieve visually
satisfactory results.

5.4.2. Variable Triangulation Density Analysis
Figure 14 presents the offset curves generated by our algo-

rithm under different mesh resolutions. The computed offset
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Figure 11: Computation time statistics with respect to discrete points. The
results clearly show that computation time scales linearly with the number of
discrete points.
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Figure 12: Time statistics with respect to offset distance. The computation time
increases with larger offset distances, owing to their impact on the propagation
region of the distance field.

curves show consistency across varying triangulation densities,
with close-up windows highlighting areas of minor deviation.
Our approach yields satisfactory results even at lower resolution
settings, which can be attributed to our Voronoi cell-based ex-
traction methodology. By embedding the Voronoi diagram into
the triangular mesh and extracting offset curves on a per-cell ba-
sis, we effectively mitigate the influence of global mesh density.
The observed geometric discrepancies are primarily attributable
to computational inaccuracies in the Voronoi diagram construc-
tion induced by triangulation coarseness, notwithstanding the ad-
equate sampling density of the source curve itself.

5.4.3. Intrinsic vs. Extrinsic Geodesic Computation
Although our method computes geodesic distances by flipping

intrinsic triangulations in the parameter domain, it is not exact
since the initial intrinsic triangulation is not completely devel-
opable. To verify the accuracy of the geodesic distance, we com-
pared it with the method of discretizing parametric surfaces into
triangular meshes. For precise geodesic distance testing, we se-
lected a sphere as the test surface due to the availability of analyt-
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Figure 13: Offset results under different curve discretization densities. From left
to right, top to bottom: results obtained with 50, 100, 200, and 2000 sampling
points. Lower discretization densities produce visible segmentation artifacts. The
results become visually satisfactory when the curve discretization density ex-
ceeds 200. The source curve is shown in red, with the offset curve in blue.

#F 80 320 1280 5120 20480

Ours 1.25% 0.43% 0.12% 0.03% 0.008%
Remeshing 2.67% 0.81% 0.23% 0.06% 0.02%

Table 3: Comparison of Geodesic Distance Accuracy: Deviation rates (%) from
analytical solutions for our intrinsic triangulation method versus the traditional
remeshing approach across varying triangulation densities. Lower values denote
a more accurate approximation of the exact geodesic distances.

ical solutions between any two points on a sphere. We discretized
the sphere at different resolutions, maintaining consistent face
counts between both triangulation methods. We validated both
methods against analytical solutions by randomly selecting start
and end points, calculating geodesic distances 10,000 times, and
computing the average deviation. Results in Table 3 show our
method achieves approximately twice the accuracy of the mesh-
based approach.

5.4.4. Failure Case
Our method employs an intrinsic triangulation flipping strat-

egy to compute geodesic distances, which, while efficient, cannot
guarantee global optimality in all scenarios. The quality of the
computed geodesic path depends significantly on the initializa-
tion path from which the flipping procedure begins. Throughout
our experimental evaluation, we utilized Dijkstra’s algorithm to
generate initialization paths, and no errors were observed in any
of the test cases presented in this paper.

To systematically investigate the limitations of our approach,
we deliberately introduced a suboptimal initialization strategy:
when constructing the initialization path between vertices t and
s, we inserted multiple randomly selected intermediate vertices,
calculated separate Dijkstra paths between consecutive vertex
pairs, then concatenated these paths to form a highly suboptimal

Figure 14: Offset curve results generated under different surface mesh resolu-
tions. From left to right, top to bottom: results computed on meshes consisting
of 72 triangles, 800 triangles, 3200 triangles, and 80000 triangles, respectively,
illustrating the algorithm’s consistency across multiple discretization levels.

initialization path that deliberately deviates from the expected
geodesic trajectory. Figure 15 juxtaposes the geodesic paths ob-
tained under both initialization strategies. The results clearly
demonstrate that with poorly constructed initialization paths, the
flipping procedure converges to suboptimal geodesic paths.

Furthermore, Figure 16 illustrates the impact of initialization
strategy on the final offset curves. With suboptimal initialization,
the computed offset curves exhibit inaccuracies. As shown in the
figure, certain points that are geometrically proximate on the sur-
face can be calculated to have disproportionately large geodesic
distances, causing the offset curve to appear much closer to the
original curve than it should be in those instances.

A fundamental property of geodesic distance fields is that their
gradient norm equals 1. Therefore, if we observe that the com-
puted distance field gradient exceeds 1, it clearly indicates an
error in the geodesic distance computation. Specifically, for a
triangle △v1v2v3 with computed geodesic distances d1, d2, and
d3 respectively, if |d2 − d1| > L(v1, v2), where L(v1, v2) is the
distance between the two points under the induced metric, then
the directional gradient of the distance field along edge v1v2 ex-
ceeds 1, which is impossible and indicates computational errors
in geodesic distances. The same principle applies to the other two
edges of the triangle. This strategy should detect most shortest
path computation failures, as when geodesic distance computa-
tion errors occur, they are often accompanied by regions where
geometrically adjacent points have vastly different Dijkstra ini-
tialization paths, leading to significantly different computed dis-
tances and resulting in substantial errors similar to the situation
illustrated in Figure 15. We must acknowledge that this approach
cannot detect 100% of all errors.

5.5. Opening & Closing
Morphological operations are essential techniques in image

processing that can be extended to curves on parametric surfaces.
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(a) (b)

(c) (d)

Figure 15: Geodesic paths computed under different initialization strategies
(mapped from parameter space to the surface for improved visualization). (a)
Dijkstra algorithm initialization path; (b) Optimized geodesic path derived from
Dijkstra initialization; (c) Suboptimal initialization path; (d) Optimized geodesic
path derived from suboptimal initialization. Orange and green dots denote the
start and end points, respectively.

Among these operations, opening and closing are particularly ef-
fective for smoothing, noise removal, and feature preservation.
Opening is defined as an erosion followed by a dilation, whereas
closing is a dilation followed by an erosion. These operations
can be efficiently implemented using our offset curve computa-
tion method.

Our approach facilitates these morphological operations on
parametric surfaces by computing inward and outward offsets at
specified distances. Figure 17 illustrates an example of opening
and closing operations applied to a curve on a parametric surface.
As observed, in the closing result, small holes are filled, while in
the opening result, small structures are removed, leaving larger
structures intact.

6. Conclusion, Limitations and Future Work

In this paper, we introduced a novel approach for computing
curve offsets on parametric surfaces. Our method is based on two
key observations. First, geodesic computation on parametric sur-
faces is an intrinsic property that remains independent of spatial
embedding. By constructing an intrinsic triangulation of the pa-
rameter space and equipping it with the surface-induced metric,
we can efficiently compute geodesic distances between arbitrary
points through intrinsic triangle flipping operations. Second, the
offset curve of different primitives is confined within their corre-
sponding Voronoi cells. This property allows us to discretize the
source curve, compute its Voronoi diagram, and then extract off-
sets locally within each cell. Compared to traditional methods,
our approach demonstrates superior efficiency and accuracy.

(a) (b)

Figure 16: Comparative visualization of curve offset results based on different
initialization methods. (a) Offset curves obtained using Dijkstra algorithm ini-
tialization; (b) Offset curves generated using suboptimal initialization strategy.

Despite these advantages, our approach has certain limitations.
While the initial intrinsic triangulation satisfies the triangle in-
equality, strictly speaking, the intrinsic triangulation is not nec-
essarily unfoldable. This introduces some precision loss in the
geodesic distance computation through edge flipping. Addition-
ally, when flipping geodesic paths using intrinsic triangles, the
geodesic path initialization is required. Our current implemen-
tation initializes paths independently for each vertex pair during
geodesic computation, neglecting potential shared information
between different paths that could be exploited to improve per-
formance. Finally, the method we use to obtain geodesic paths
based on intrinsic triangle flipping relies on initialization and
may not always yield the shortest geodesic length in highly com-
plex scenarios.

For future work, we plan to enhance our algorithm in two
primary directions. First, we aim to develop more appropriate
strategies for geodesic length computation during intrinsic trian-
gle flipping operations on parametric surfaces, thereby improv-
ing the accuracy of our geodesic computations. Second, we in-
tend to eliminate redundant calculations by leveraging shared in-
formation between paths, further accelerating the overall compu-
tation process.
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