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A B S T R A C T

Computing surface-based Voronoi diagrams is a fundamental operation in geometry
processing, typically relying on either geodesic or straight-line distances as solvers.
However, when the input is a 3D model containing thin-plate structures, geodesic dis-
tances incur significant computational overhead, whereas straight-line distances can re-
sult in ownerless regions. To address this issue, we propose integrating biharmonic em-
bedding distances into the SurfaceVoronoi framework. Specifically, mesh vertices can
be embedded into a high-dimensional spectral space, ensuring that the embedding dis-
tance closely approximates the straight-line distance between sufficiently close points.
In contrast, when points reside on opposite sides of a thin plate, the embedding distance
significantly exceeds the straight-line distance, effectively preventing dominance from
penetrating through to the opposite side. Our proposed framework offers several advan-
tages: 1) It operates efficiently, as the embedding distance can be rapidly evaluated as
a straight-line distance in high-dimensional space. 2) It guarantees the “one site, one
region” property, even for models consisting of thin-plate structures. 3) It enables high-
quality triangulation through iterative repositioning of each site to the centroid of its
dominant region. Extensive experiments conducted on benchmark meshes demonstrate
these benefits.

© 2025 Elsevier B.V. All rights reserved.

1. Introduction1

Partitioning a 2-manifold surface into regions based on prox-2

imity to a set of sites is a fundamental problem in geometry3

processing. The resulting structure, known as a surface-based4

Voronoi diagram (VD), has been widely applied in tasks such5

as surface sampling, remeshing, parameterization, and shape6

abstraction [1].7

Over the past decades, two primary types of distance met-8

rics have been commonly adopted for constructing surface-9

based Voronoi diagrams: geodesic distances and Euclidean dis-10

tances. Geodesic distances are intrinsic and faithfully reflect the11

shortest path along the surface, enabling accurate and natural12

Voronoi partitioning [2, 3]. However, they are computationally13

expensive and often tightly coupled with the diagram construc-14

tion process [4], limiting scalability to large meshes. In con-15

trast, Euclidean-based Voronoi diagrams (RVDs) [5] provide a16

more efficient alternative by utilizing straightforward Euclidean17

distances in three-dimensional space. While faster, these ap-18

proaches are extrinsic and prone to topological inconsistencies19

such as fragmented or ownerless regions, particularly on highly20

curved or thin-sheet surfaces. Although the propagation-based21

SurfaceVoronoi framework [6] partially mitigates the ownerless22

region problem inherent to Euclidean distances, it still produces23

geometrically unreasonable Voronoi regions in certain critical24

areas, such as the boundaries of thin structures. As shown in25

Fig. 1 with EDBVD, these limitations significantly restrict the26

practical application scope of this approach.27

In this work, we extend the SurfaceVoronoi framework by28

introducing a distance metric based on biharmonic embedding.29

Our key insight is recognizing that this distance metric in-30

herently reflects the intrinsic geometric properties of the sur-31

face, making it an ideal candidate for integration with the Sur-32

faceVoronoi framework. By performing a one-time embedding33

of each mesh vertex into a high-dimensional spectral space con-34

structed from the eigenvectors of the biharmonic operator [7],35
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Fig. 1. Visual comparison of Voronoi diagrams generated by GVD, EDBVD, RVD, and our method on four models: Lampshade (a thin-shell model,
top row), Pot (second row), Micro Block (third row), Shield (fourth row) , and Boot (bottom row). Red dots indicate sampled sites; red boxes highlight
noticeable differences among methods. Runtime (in seconds) is shown at the top-right of each subfigure. GVD yields the most accurate boundaries but is
computationally expensive. RVD runs faster but often produces fragmented or ownerless regions. EDBVD improves efficiency and connectivity, but may
suffer from jagged transitions due to non-metric propagation. In contrast, our method generates clean, well-connected partitions, avoiding the flaws of
RVD and EDBVD, and offering a good balance between quality and efficiency. The Lampshade, Pot, Micro Block, Shied, and Boot models contain 20k,
20k, 13k, 35k vertices, and 19k vertices, respectively.

we enable distance calculations that are both computationally36

efficient and geometry-aware. Distances are simply evaluated37

as Euclidean norms between embedding vectors, avoiding the38

need for expensive geodesic computations while maintaining39

sensitivity to the surface’s intrinsic structure. This innovative40

combination yields a distance field that is smooth, globally co-41

herent, and fully compatible with the existing SurfaceVoronoi42

pipeline without requiring any structural modifications, thereby43

enhancing partition quality while preserving computational ef-44

ficiency.45

Our embedding-driven SurfaceVoronoi algorithm offers a46

simple yet effective approach that overcomes key limitations47

of traditional distance metrics. By leveraging biharmonic em-48

bedding, our method elegantly handles challenging cases such49

as thin structures that conventional approaches struggle with,50

while maintaining computational efficiency and geometric fi-51

delity.52

2. Related Work53

2.1. Surface-based Voronoi Diagram54

The construction of Voronoi diagrams on curved surfaces,55

particularly non-differentiable polyhedral surfaces, plays a crit-56

ical role in digital geometry processing applications. Surface-57

based Voronoi diagram computation methods can be broadly58

classified into three categories: (1) mesh-based approaches59

utilizing geodesic distances [8, 9], (2) parametrization-based60

methods operating on planar domains [10], and (3) oper-61

ating in the 3D Euclidean space [11, 12, 13] through 3D62

Voronoi/Delaunay solvers.63

Geodesic distance approaches offer theoretical precision but64

typically incur substantial computational costs [14]. Liu et65
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al. [8] analyzed the structure of iso-contours, bisectors, and66

Voronoi diagrams on triangular meshes, developing a geodesic67

Voronoi diagram (GVD) algorithm built upon the MMP algo-68

rithm’s window propagation scheme [15]. Similar window-69

propagation mechanisms have been employed in subsequent70

GVD approaches [16, 17, 18], but remain tightly coupled with71

geodesic computation frameworks.72

Parametrization-based approaches [10, 19] require precom-73

puting global parametrizations, making them susceptible to nu-74

merical instabilities and topological challenges when handling75

complex geometries.76

Restricted Voronoi diagrams (RVD) [11, 12, 13] offer signif-77

icant performance improvements by substituting geodesic dis-78

tances with Euclidean distances. However, for models with thin79

structural elements, RVDs may violate the critical “one site,80

one region” property unless site distributions are sufficiently81

dense. Yan et al. [12] introduced localized RVD (LRVD) to82

address thin-plate models by first establishing neighborhood re-83

lationships, though triangulation quality issues remained unre-84

solved. Wang et al. [13] later developed a fast post-processing85

technique to remediate problematic RVD cells by enforcing the86

“one site, one region” property.87

Alternative approaches include the diffusion diagrams pro-88

posed by Herholz et al. [20], which leverage heat diffusion89

principles, though these are computationally equivalent to back-90

substitution only when system matrix factorization is precom-91

puted.92

The most recent advancement in computing Voronoi dia-93

grams on surfaces is the SurfaceVoronoi framework [6], which94

innovatively decouples Voronoi diagram computation from dis-95

tance metrics, presenting a generalized framework for Voronoi96

diagram construction. Wang et al. [21] extended this approach97

to 3D space. While its propagation strategy partially addresses98

the ownerless region problem encountered when using Eu-99

clidean distances, it remains constrained by the inherent prop-100

erties of Euclidean metrics, leading to unreasonable behaviors101

in certain areas, particularly at the thin-plate edge regions illus-102

trated in Fig. 1.103

2.2. Biharmonic Distance104

Lipman et al. [7] proposed the biharmonic distance (BH),105

obtained by weighting Laplacian eigenmodes with the inverse106

squared eigenvalues. This mathematical formulation bridges107

the gap between previously established distance measures while108

addressing their limitations. Unlike geodesic distances, which109

lack shape awareness and exhibit derivative discontinuities, or110

diffusion distances, which require careful parameter tuning,111

BH achieves an elegant balance of local and global proper-112

ties. Their theoretical analysis demonstrated that biharmonic113

distance possesses three key advantages: (i) it is smooth and114

locally isotropic, mirroring geodesic behaviour close to a point;115

(ii) it remains sensitive to large-scale structure without requir-116

ing a user-chosen diffusion time; and (iii) it is numerically ro-117

bust to mesh irregularities and mild topological noise. These118

properties make biharmonic distance particularly suitable for119

mesh processing tasks requiring both local precision and global120

shape awareness.121

In this paper, we propose integrating biharmonic distances122

into the SurfaceVoronoi framework, effectively addressing the123

challenges of thin-plate structures while maintaining compu-124

tational efficiency and topological correctness. Our approach125

ensures the “one site, one region” property even for complex126

models and enables high-quality triangulation through iterative127

site repositioning.128

3. Method129

Our approach leverages the flexibility of the SurfaceVoronoi130

framework, which supports arbitrary distance metrics for131

Voronoi diagram computation. We employ high-dimensional132

biharmonic embedding to transform the mesh vertices into a133

spectral space where Euclidean distances between embedded134

vectors effectively represent biharmonic distances on the orig-135

inal surface. By feeding these biharmonic distance measure-136

ments into the SurfaceVoronoi framework, we obtain partition-137

ing results that significantly outperform conventional Euclidean138

distance-based approaches while preserving computational ef-139

ficiency.140

The proposed algorithm comprises three principal stages: (1)141

embedding of input sites into the triangle mesh, a necessary142

preprocessing step as the biharmonic distance formulation only143

supports calculations between mesh vertices; (2) biharmonic144

embedding of mesh vertices into a high-dimensional spectral145

space; and (3) Voronoi diagram computation on the original146

surface using distances derived from this embedding. This147

methodology maintains computational efficiency while sub-148

stantially enhancing geometric fidelity, particularly in challeng-149

ing surface configurations such as thin structures and regions150

exhibiting high curvature, where traditional approaches often151

produce topological inconsistencies or fragmented partitions.152

Furthermore, we distinguish our approach from prior work.153

Although SurfaceVoronoi [6] briefly includes an example using154

biharmonic distance, it implements this approach inefficiently155

by computing a separate global distance field for each site, re-156

quiring pairwise calculations between each site and all mesh157

vertices. In contrast, our method first embeds all vertices into158

a high-dimensional spectral space, enabling direct computation159

of the Voronoi diagram through local triangle-wise operations.160

This approach significantly improves efficiency and scalability161

while preserving geometric fidelity.162

3.1. Site Integration for Mesh Preprocessing163

A critical constraint of our biharmonic embedding approach164

is that it exclusively operates on mesh vertices, whereas Voronoi165

sites rarely coincide with these predefined vertex locations.166

Given our fundamental assumption that all sites lie on the sur-167

face, we must integrate these sites into the mesh structure prior168

to computing both the biharmonic embedding and the resulting169

Voronoi diagram.170

We implement a straightforward yet effective approach for171

site integration. For sites s1, ..., sn located on a mesh trian-172

gle △v1v2v3, all of which inherently occupy the same plane,173

we perform a Delaunay triangulation on the combined point174

set {s1, ..., sn, v1, v2, v3}. This triangulation necessarily preserves175
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the three edges of the original triangle △v1v2v3 (in cases where176

a site lies precisely on a triangle edge, we apply a small pertur-177

bation to relocate it to the triangle interior, avoiding degenerate178

configurations). Through this procedure, we effectively embed179

sites s1, ..., sn into the original triangular face while maintaining180

the mesh’s topological integrity.181

By applying this operation to each triangle containing sites,182

we seamlessly integrate all Voronoi sites into the mesh struc-183

ture, enabling subsequent biharmonic embedding across the184

augmented vertex set.185

3.2. Biharmonic Embedding186

After integrating Voronoi sites into the mesh, we compute the187

biharmonic embedding of the augmented mesh vertices. This188

embedding maps each vertex into a high-dimensional spectral189

space derived from the eigenvectors of the Laplace–Beltrami190

operator [22, 23].191

The key insight of our approach is that in this embedding192

space, Euclidean distances between vectors closely approxi-193

mate biharmonic distances on the original surface [24, 25]. For-194

mally, the squared biharmonic distance between two vertices x195

and y is defined as196

dB(x, y)2 =

∞∑
k=1

(ϕk(x) − ϕk(y))2

λ2
k

, (1)

where ϕk and λk are the k-th eigenfunction and eigenvalue of197

the Laplace–Beltrami operator, respectively [7].198

By representing each mesh vertex as a point in this spec-199

tral space, we transform the complex problem of computing200

intrinsic surface distances into simple Euclidean distance cal-201

culations.202

We construct this embedding by first computing the cotan-203

gent Laplacian matrix of the mesh and solving for its eigen-204

vectors and eigenvalues. An equivalent form of the biharmonic205

distance uses the Green’s function of the biharmonic operator:206

dB(x, y)2 = gB(x, x) + gB(y, y) − 2gB(x, y), (2)
207

gB(x, y) =
∞∑

k=1

ϕk(x)ϕk(y)
λ2

k

. (3)

The embedding coordinates are then formed by weighting these208

eigenvectors according to the inverse squared eigenvalues, fol-209

lowing the formulation proposed by Lipman et al. [7].210

This embedding approach offers significant computational211

advantages while preserving the desirable properties of bihar-212

monic distances, including their balance between local isotropy213

and global shape awareness. The resulting distance metric is214

both efficient to compute and geometrically meaningful, mak-215

ing it particularly well-suited for integration with the Sur-216

faceVoronoi framework in the next stage of our algorithm.217

3.3. Voronoi Diagram Computation218

After obtaining the high-dimensional biharmonic embed-219

ding, we utilize it to compute the Voronoi diagram on the orig-220

inal surface by integrating with the SurfaceVoronoi framework.221

Fig. 2. Illustration of the triangle-level cutting process used to trace Voronoi
boundaries. Following [6], we perform incremental half-plane cutting to
compute the lower envelope of distance fields inside each triangle, enabling
precise Voronoi region extraction.

SurfaceVoronoi consists of two main stages: propagation and222

cutting. The propagation stage identifies contributing distance223

fields for each triangle on the mesh. In our implementation,224

Voronoi sites propagate outward from their containing triangles225

following the SurfaceVoronoi framework, but we replace the226

original distance calculation with measurements derived from227

our biharmonic embedding. Specifically, the distance between228

two points is computed as the Euclidean distance between their229

corresponding embedding vectors.230

In the cutting stage, we adopt the squared distance linear231

approximation assumption from SurfaceVoronoi to improve232

computational accuracy. Specifically, we adopt the local lin-233

ear approximation of distance fields from the SurfaceVoronoi234

method [6], where the distance at any point (x, y) inside a trian-235

gle is modeled as a linear function:236

d(x, y) = ax + by + c, (4)

with coefficients obtained by solving the linear system237 abc
 =
x1 y1 1
x2 y2 1
x3 y3 1


−1 d1

d2
d3

 , (5)

where (x j, y j) are the coordinates of the triangle’s three vertices,238

and d j are their respective distances to a given Voronoi site239

(measured in the embedding space).The cutting process used to240

determine Voronoi boundaries inside each triangle is illustrated241

in Fig. 2.242

This approach allows us to determine the Voronoi partition243

within each triangle with higher precision while utilizing the244

geometric information captured by the biharmonic embedding.245

This integration creates an efficient pipeline that maintains246

the intrinsic geometric properties of the biharmonic distance247

while leveraging the established computational framework of248

the SurfaceVoronoi algorithm [26].249

4. Experiments250

4.1. Experimental Setting251

We implemented our method in C++. All experiments were252

conducted on a Windows 11 machine with an Intel Core i9-253

13900HX CPU (2.20 GHz) and 32GB of RAM. All reported254
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Fig. 3. Surface Voronoi diagrams generated by our method on 15 diverse models. Red dots indicate sampled sites. These results highlight the robustness
and adaptability of our method across different surface geometries and complexities.

Fig. 4. Computational efficiency comparison of EDBVD, RVD, and ours
as site count increases from 1,000 to 10,000. Total runtime averaged across
100 models with diverse geometries (biharmonic embedding dimension d =
10). GVD excluded due to prohibitive computational cost.

timings include both the distance propagation and bisector ex-255

traction stages.256

Furthermore,our method relies on biharmonic embedding de-257

rived from Laplace–Beltrami eigenfunctions, which are math-258

ematically defined on smooth Riemannian manifolds [7]. This259

formulation necessitates that input surfaces be well-formed 2-260

manifolds. Application of spectral methods to non-manifold261

geometries can introduce numerical instability due to ill-defined262

cotangent weights and singular Laplacian operators. Our imple-263

mentation strictly adheres to these input assumptions. Conse-264

quently, all test models in our experimental evaluation are man-265

ifold meshes.266

Fig. 5. Relationship between computational embedding time and embed-
ding dimension across 100 models. The number of sampled sites is fixed at
100. Embedding time exhibits approximately linear growth with increas-
ing dimension due to additional spectral computations, while maintaining
efficiency for practical applications.

4.2. Visual Comparison267

To qualitatively assess the partitioning quality of different268

methods, we conduct a visual comparison on three representa-269

tive surface models: Lmpshade, Pot, Micro Block, Bunny and270

Shield. We evaluate Geodesic Voronoi Diagrams (GVD), Re-271

stricted Voronoi Diagrams (RVD), Euclidean Distance-Based272

Voronoi Diagrams (EDBVD) using the SurfaceVoronoi frame-273

work, and our proposed biharmonic embedding-based method.274

For each model, 100 sites are selected via blue noise sampling.275

The same set of sampled sites is used for all methods to ensure276

consistency and fairness.277

Fig. 1 shows the results of different methods. From the visual278

results, we observe the following:279
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Fig. 6. Ablation study of embedding dimension. Voronoi partitions generated with different embedding dimensions (d = 3, 4, 6, 10, 50) on five models:
Lampshade, Vase, Pig, Boot, each containing approximately 20K vertices, and Shield with around 35K vertices. Red dots denote sampled sites, and red
boxes highlight areas with noticeable differences among embedding settings.

• GVD yields the most geometrically accurate partitions,280

with smooth and well-aligned boundaries. However, it281

suffers from extremely high computational cost, making282

it impractical for large-scale models or time-sensitive ap-283

plications.284

• RVD offers very fast computation but frequently generates285

fragmented or undefined regions, especially in thin plate286

or high-curvature areas. This occurs because Euclidean287

distance cannot effectively capture the intrinsic properties288

of the surface.289

• EDBVD partially mitigates the ownerless region problem290

through its propagation mechanism, but it remains con-291

strained by the limitations of Euclidean distance. As a re-292

sult, it still produces geometrically unreasonable partition-293

ing, particularly along the boundaries of thin structures.294

• Our method consistently produces clean, connected, and295

well-shaped regions. Although not the fastest among all296

methods, it avoids the topological flaws of RVD and the297

boundary artifacts of EDBVD. This results in a favorable298

balance between computational efficiency and visual qual-299

ity.300

In addition, Fig. 3 shows results on 15 diverse models, further301

demonstrating that our method consistently produces robust and302

semantically meaningful partitions across a wide range of sur-303

face geometries. These results reinforce the adaptability and304

generalization capability of our embedding-driven approach.305

4.3. Time Comparison306

We evaluate the runtime efficiency of our method from two307

perspectives: (1) the impact of the number of sites on the prop-308
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Fig. 7. Voronoi partitions generated with 20, 50, 100, 200, and 500 sampled sites on four models: Lampshade, Fish Pen Pot, Trinket Boxes, and Camera.
The first three are thin-shell models, while the Camera is a relatively regular solid model. Red dots denote sampled sites. The experiment aims to evaluate
the consistency and robustness of partitioning under varying sampling densities. Even under sparse sampling, our method produces well-formed regions
without fragmentation or ambiguity.

agation and cutting stages, and (2) the effect of the embedding309

dimension on the embedding computation cost.310

4.3.1. Runtime Performance with Increasing Site Density311

We conducted performance analysis on computational scala-312

bility with respect to increasing Voronoi site density. Our eval-313

uation utilized a dataset of 100 surface meshes exhibiting var-314

ied topological characteristics, with an average resolution of315

approximately 20,000 vertices per model. We fix the embed-316

ding dimension at d = 10 and vary sampled sites from 1,000 to317

10,000, measuring the runtime of both propagation and cutting318

stages. All sites were generated using blue noise sampling to319

ensure consistent distribution.320

Fig. 4 compares RVD, EDBVD, and our method. We omit321

GVD results due to its prohibitive runtime (exceeding 60 sec-322

onds for high site counts). Our method demonstrates linear scal-323

ability with respect to site count. While moderately slower than324

EDBVD due to the embedding computation overhead, our ap-325

proach provides significantly better geometric consistency and326

smoother Voronoi partitions. This moderate performance cost327

represents a reasonable trade-off for achieving high-quality sur-328

face Voronoi diagrams that avoid the artifacts present in faster329

methods.330

4.3.2. Computational Efficiency of Biharmonic Embedding331

We conducted a systematic assessment of biharmonic em-332

bedding computation time across dimensions from d = 2 to d =333

20 on 100 models, while maintaining a constant sample density334

of 100 Voronoi sites per model. Fig. 5 illustrates that compu-335

tational time increases approximately linearly with embedding336

dimension. This behavior corresponds to the additional com-337

putational requirements of calculating higher-order eigenfunc-338

tions in the Laplace–Beltrami spectral decomposition. Despite339

this linear growth, the embedding procedure maintains practical340

efficiency, with mean processing times consistently below one341

second even at the maximum tested dimension (d = 20). This342

performance ensures the method’s viability for integration into343

comprehensive surface analysis workflows.344
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Fig. 8. Voronoi diagram computation on meshes with poor triangulation.
The input meshes (left) exhibit numerous elongated and ill-conditioned tri-
angles. Our method produces well-structured Voronoi partitioning (right)
despite the irregular triangulation, demonstrating algorithmic robustness
to poor mesh quality.

Fig. 9. Surface power diagram with weighted sites. Sites with positive
weights are shown as red dots, and those with zero weights are shown as
dark green dots.

4.4. Ablation Study345

We analyze how key parameters affect the quality of Voronoi346

partitions generated by our method by examining embedding347

dimension.348

We evaluate how embedding dimensionality affects partition349

quality using the Lampshade, Vase, Pig, Shield, and Boot mod-350

els with 100 sites each, varying dimension d among 3, 4, 6, 10,351

50).352

Fig. 6 shows that increasing the embedding dimension leads353

to progressively more accurate partitioning by better capturing354

the intrinsic geometry. Notably, the transition from d = 3 to355

d = 6 significantly improves boundary smoothness and region356

coherence. However, the results computed at d = 10 and d = 50357

exhibit only slight differences in the resulting partitions. Based358

on these observations, we adopt d = 10 as our default configu-359

ration, as it offers a good balance between partition quality and360

computational cost.361

4.5. Voronoi Diagrams at Different Site Densities362

We conducted experimental evaluations on several models363

using a fixed embedding dimension d = 10, generating Voronoi364

Fig. 10. Surface Voronoi diagram with user-defined breakline con-
straints.The blue curve represents a breakline, which acts as a barrier to
prevent Voronoi cells from propagating across breakline.

diagrams at varying site densities: 20, 50, 100, 200, and 500365

sites per model.366

Fig. 7 shows the visual progression as site count increases.367

With fewer sites (20-50), the partitions naturally contain larger368

regions. As the number of sites increases to 100, 200, and 500,369

the diagram exhibits progressively finer granularity. The vi-370

sualizations demonstrate our method’s ability to handle differ-371

ent sampling densities while maintaining consistent partitioning372

behavior across all tested models.373

4.6. Robustness374

The ability to compute high-quality Voronoi diagrams on375

imperfect meshes is crucial for practical applications, as real-376

world models often contain triangulation defects. This presents377

a significant challenge since the cotangent Laplacian formula-378

tion underlying our method can be influenced by mesh qual-379

ity. To assess robustness, we evaluated our approach on meshes380

with suboptimal triangulation characteristics. Fig. 8 presents381

results on test meshes containing elongated triangles and non-382

uniform vertex distribution. The resulting Voronoi partitions383

demonstrate acceptable quality without significant distortions384

or topological inconsistencies, suggesting that our computation385

exhibits a degree of resilience to imperfections in the underly-386

ing triangulation.387

4.7. Extensions and Applications388

Our method preserves the flexible extensibility of the Sur-389

faceVoronoi framework. By leveraging this foundation, we can390

directly support various diagram types with only minor modifi-391

cations to the distance computation.392

4.7.1. Power Diagram393

Our approach easily supports power diagrams by modifying394

the distance function for a site p with weight w to:395

d(v, p) = ∥v − p∥2 − w. (6)

Fig. 9 demonstrates this capability, where weighted sites (20396

out of 1000 with nonzero weights) produce appropriately larger397

Voronoi cells.398
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Fig. 11. Remeshing comparison on the Lampshade model with 3000 sam-
pled sites. (a) Original mesh. (b) EDBVD-based remeshing. (c) RVD-based
remeshing. (d) Remeshing using our method. Our method produces more
feature-aligned triangulations, demonstrating superior quality under iden-
tical sampling conditions.

4.7.2. Breakline Constraints399

Our method also handles breakline constraints, where user-400

defined feature lines prevent Voronoi regions from crossing im-401

portant surface features. As shown in Fig. 10, the diagram prop-402

erly respects these constraints by limiting propagation across403

breaklines.404

4.7.3. Remeshing405

Surface remeshing is a fundamental application in geome-406

try processing with significant practical implications. We con-407

ducted experimental evaluation using this application to assess408

our method’s effectiveness. The remeshing process involves409

computing the Voronoi diagram on the surface and extracting410

its dual to generate a triangulated mesh. We compared our ap-411

proach against EDBVD [6] and RVD on the Lampshade model412

(20K vertices), using identical configurations of 3000 sampled413

sites. Fig. 11 presents comparative results: the original mesh414

(a), followed by remeshing results from EDBVD (b), RVD (c),415

and ours (d). The results demonstrate that our approach yields416

enhanced triangulation quality with superior feature preserva-417

tion.418

For quantitative validation, we conducted experiments on419

100 manifold models with 3000 blue-noise distributed sites per420

model. Table 1 presents the average bidirectional Hausdorff421

Distance (HD) and bidirectional Chamfer Distance (CD) be-422

tween remeshed and original surfaces. Our method achieves423

the lowest values in both metrics, confirming superior geomet-424

Table 1. Quantitative comparison between remeshed and original surfaces
across 100 test models (3000 sites per model). All distance metrics are nor-
malized relative to the bounding box diagonal.

Method Hausdorff Distance Chamfer Distance

EDBVD 0.0231 0.0064

RVD 0.0238 0.0066

Ours 0.0219 0.0061

ric fidelity across diverse models.425

5. Conclusion426

We presented an enhancement to the SurfaceVoronoi frame-427

work by replacing the original Euclidean embedding metric428

in EDBVD with a biharmonic embedding. By leveraging the429

smoothness and intrinsic distance-preserving properties of bi-430

harmonic embeddings, our method offers a more faithful ap-431

proximation of surface geometry while retaining the computa-432

tional efficiency of embedding-based distance evaluation.433

Extensive experiments on a variety of mesh models demon-434

strate that our approach consistently produces high-quality435

Voronoi partitions with clearer boundaries and fewer topolog-436

ical artifacts. Compared to geodesic-based methods such as437

GVD, our method achieves substantial reductions in computa-438

tion time. Compared to existing EDBVD and RVD methods, it439

significantly improves partition accuracy and region coherence.440

Moreover, our method exhibits strong scalability with respect441

to both the number of sampled sites and the mesh complex-442

ity, making it suitable for large-scale surface processing tasks.443

These results confirm that biharmonic embeddings provide a444

promising direction for efficient and intrinsic-aware surface par-445

titioning.446

In future work, we plan to explore adaptive embedding di-447

mensionality strategies, investigate faster spectral solvers for448

large-scale Laplacian eigenproblems, and extend the framework449

to support anisotropic or direction-aware distance metrics.450
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