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A B S T R A C T

This paper addresses the challenge of representing geodesic distance fields on triangular meshes
in a piecewise linear manner. Unlike general scalar fields, which often assume piecewise linear
changes within each triangle, geodesic distance fields pose a unique difficulty due to their
non-differentiability at ridge points, where multiple shortest paths may exist. An interesting
observation is that the geodesic distance field exhibits an approximately linear change if each
triangle is further decomposed into sub-regions by the ridge curve. However, computing the
geodesic ridge curve is notoriously difficult. Even when using exact algorithms to infer the ridge
curve, desirable results may not be achieved, akin to the well-known medial-axis problem. In
this paper, we propose a two-stage algorithm. In the first stage, we employ Dijkstra’s algorithm
to cut the surface open along the dual structure of the shortest path tree. This operation allows
us to extend the surface outward (resembling a double cover but with distinctions), enabling
the discovery of longer geodesic paths in the extended surface. In the second stage, any mature
geodesic solver, whether exact or approximate, can be employed to predict the real ridge curve.
Assuming the fast marching method is used as the solver, despite its limitation of having a single
marching direction in a triangle, our extended surface contains multiple copies of each triangle,
allowing various geodesic paths to enter the triangle and facilitating ridge curve computation. We
further introduce a simple yet effective filtering mechanism to rigorously ensure the connectivity
of the output ridge curve. Due to its merits, including robustness and compatibility with any
geodesic solver, our algorithm holds great potential for a wide range of applications. We
demonstrate its utility in accurate geodesic distance querying and high-fidelity visualization of
geodesic iso-lines.

1. Introduction
Given a 3D model  and a base point 𝑠 on its surface, the geodesic ridges with respect to 𝑠 denote the set of

points where multiple geodesic shortest paths exist from 𝑠. These ridge points typically form a curved cut locus, along
which the surface can be split into a topological disk. The ridge curve is crucial in characterizing the geometric and
topological structure (Sakai, 1996).

From a differential geometry perspective, the geodesic distance function is non-differentiable at geodesic ridge
points, distinguishing it from a smooth scalar field on the surface. While a smooth scalar field can be adequately
approximated by assuming linearity within each triangle, especially for small triangles, the geodesic distance field
cannot be simply represented as piecewise linear due to non-differentiability. This departure from linearity introduces
inaccuracies in applications such as geodesic distance estimation near the ridge curve and the extraction of geodesic
isolines. Building a piecewise linear representation of a geodesic distance field is imperative.

We observe that the geodesic distance field is approximately linear within a triangle when further decomposing
the triangle into small sub-regions along ridge curves. This observation motivates our paper’s theme: devising a robust
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algorithm to compute the geodesic ridge curve. To the best of our knowledge, computing the geodesic ridge curve is
notoriously difficult, with few available algorithms. The most recent algorithm, proposed by Mancinelli et al. (2021),
includes a filtering step using a gradient-norm tolerance, making it less robust. Tests reveal that the reported ridge curve
exhibits zigzag patterns, deviating significantly from the actual ridge curve. Moreover, it appears that exact geodesic
algorithms can report the ridge curve during the propagation of windows, but this is misleading for two reasons. First,
tracing the ridge curve during the execution of exact geodesic algorithms is challenging due to potential hyperbolic
segments existing in the real ridge curve. Second, the ridge curve reported by window propagation stretches across the
surface and is highly dependent on the triangulation. The desirable ridge curve should reveal the underlying geometry
rather than being influenced by the triangulation.

In this paper, we propose a two-stage algorithm. In the first stage, we employ Dijkstra’s algorithm to obtain the
shortest path tree and its dual structure. We identify non-trivial cycles and cut the surface into topological disks.
Subsequently, we extend the surface outward, resembling a double cover but with distinctions, enabling each triangle
to have multiple copies in the extended surface. This extension allows for the survival of long geodesic paths, even
if they are not the shortest. In the second stage, we use a geodesic algorithm to refine the cut locus, ensuring that it
accurately reflects how geodesic paths converge from different directions. Our algorithm allows any geodesic solver
to drive the computation of geodesic distances. For example, the fast marching method assumes the linearity of the
distance field and has a single marching direction in a triangle, but our extended surface, containing multiple copies
of each triangle, enables geodesic paths to enter the triangle from various directions. Furthermore, we introduce a
simple yet effective filtering technique to rigorously ensure the connectivity of the output ridge curve. In Figure 1, two
examples of ridge-curve computed by our algorithm are presented, with the fast marching method employed as the
geodesic solver. The remaining displayed results in the paper use the VTP algorithm (Qin et al., 2016) as the geodesic
solver. We demonstrate its utility in accurate geodesic distance querying and high-fidelity visualization of geodesic
iso-lines.

Figure 1: Ridge curve examples computed by our algorithm.

2. Related Works
2.1. Topological cut locus

The concept of a cut locus was introduced by Poincaré (1905). Consider a compact real-analytic Riemannian 2-
manifold denoted as 𝑀 , essentially a closed surface equipped with a smooth Riemannian metric. The typical cut
locus of a base point 𝑠 in 𝑀 is defined as the set of points where minimizing geodesics issued from 𝑠 stop being
minimizing. Due to its advantageous property of cutting the surface into a topological disk (Mancinelli et al., 2021),
the cut locus is essential for analyzing geometric and topological structures. For instance, Myers (1935) established,
based on topological considerations, that the ridges of a closed real-analytic surface form a graph with a finite number
of branches. Buchner (1977) extended this result to higher dimensions, demonstrating that in dimension two, the local
structure resembles that of a tree. Sakai (1996) proved that the cut locus shares the same homology as 𝑀 , i.e., it forms
a tree for surfaces with genus zero but contains 2𝑔 cycles for high-genus surfaces, where 𝑔 is the genus of 𝑀 .
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2.2. Graph-based non-trivial cycles
Direct computation of the cut locus for a smooth surface is not straightforward. In past research, most researchers

initially extract a graph embedded on the surface and then aim to find the shortest non-trivial cycles. Cutting a surface to
reduce its topological complexity is a common technique used in geometric computing and topological graph theory.
Erickson and Har-Peled (2002) discuss the relevance of cutting a surface to obtain a topological disk in computer
graphics. Thomassen (1990) was the first to provide a polynomial-time algorithm for finding a shortest non-separating
and a shortest non-contractible cycle in a graph on a surface. Although Thomassen does not claim any specific running
time, his algorithm attempts a quadratic number of cycles, and for each one, it has to determine if it is non-separating
or non-contractible. This yields a rough estimate of 𝑂(𝑛(𝑛+ 𝑔)2) for its running time, where 𝑛 denotes the complexity
of the surface. Rote (2003) describes applications that algorithmic problems involving curves on topological surfaces
have in other fields. Kutz (2006) presented an algorithm that computes a shortest non-contractible and a shortest
non-separating cycle on an orientable combinatorial surface of bounded genus in 𝑂(𝑛 log 𝑛) time.

2.3. Geodesic algorithms
Given a surface with an analytic representation, the query of a geodesic path can be formulated as the Euler-

Lagrange partial differential equation in differential geometry. However, in general, the PDE has no closed-form
solution, necessitating the search for a numerical solution. The discrete geodesic problem typically takes a triangle
mesh as the input and aims to find the shortest paths represented as polylines on the polygonal surface.

Exact geodesic algorithms. Representative exact algorithms include the MMP algorithm (Mitchell et al., 1987),
the CH algorithm (Chen and Han, 1990), and some variant versions (Surazhsky et al., 2005; Xin and Wang, 2009;
Liu, 2013; Xu et al., 2015; Qin et al., 2016). These algorithms commonly employ a window to encode geodesic paths
that share the same edge sequence, enabling the representation of infinitely many geodesic paths with a finite number
of discrete windows. The key idea is to propagate a dynamic outward wavefront across mesh faces in a Dijkstra-like
sweep.

Exact geodesic algorithms cannot be directly applied to find ridge curves. The main reason is that the ridge curve
reported by window propagation stretches across the surface and is highly dependent on the triangulation. However,
the desirable ridge curve should be sufficiently clean to reveal the underlying geometry, rather than being influenced
by the triangulation.

Approximate geodesic algorithms. There are approximate geodesic distance computation algorithms like the Fast
Marching method (Kimmel and Sethian, 1998) and the heat method (Crane et al., 2013). For example, the heat
method (Crane et al., 2013), as well as its parallel implementation (Tao et al., 2019), utilizes an observation that
the heat field and the geodesic distance field share the common isolines (but may have different values). They need
to normalize the gradient field into a unit vector field before the reconstruction of the distance field. These methods
provide efficient approximations of geodesic distances on the model.

2.4. Challenges in geodesic ridge curve computation
Sinclair and Tanaka (2002) computes a piecewise polynomial approximation to the exponential map and numer-

ically inverts it, accurately considering the global nature of the geodesic ridges. However, it is limited to handling
models with a genus of 1. Itoh and Sinclair (2004) addresses the issue of the cut locus becoming dense in the
smooth surface in the limit of infinitely small triangles by introducing a minimal angular resolution. However, it is
important to note that the proposed method supports only convex surfaces. Misztal et al. (2011) observes the process
of forward propagation of the distance field, detecting the cut locus from self-intersections of the propagated front.
Theoretically, the method is applicable to surfaces of arbitrary genus. However, the computational cost is extremely
high, and it suffers from numerical issues. Mancinelli et al. (2021) utilizes the computation of triangle gradient values
to estimate the positions of ridges, ensuring correct ridge topology through post-processing. The method demonstrates
a remarkably fast computational speed. However, due to the approximate nature of gradients, the estimated ridges often
lack accuracy, particularly in cases of larger triangles or lower triangulation quality in the model. Tests also show that
its post-processing step is not robust, leading to frequent failures in complex scenarios. Générau et al. (2022) provides
a thorough examination of the topic, introducing a rigorous mathematical approach to compute an approximation of
the cut locus. Nevertheless, achieving a practical and robust algorithm based on Générau et al. (2022) appears to be a
non-trivial task.
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Figure 2: The pipeline of our algorithm.

3. Algorithm
Our algorithm consists of two stages for computing accurate and smooth geodesic ridges on the given surface.

Initially, we employ Dijkstra’s algorithm for computation, cutting the surface into a topological disk. For genus-0
models, the model can be directly cut along the dual of the shortest path tree. However, for higher-genus models,
identifying non-trivial cycles is necessary, aided by both the shortest path tree and its dual. It’s important to note that
the cut locus in this stage follows mesh edges, resulting in a zigzag pattern. However, this characteristic does not have
any adverse effect on the final ridge curve. In the next stage, we extend the surface to generate sufficient copies of
each triangle, facilitating a sufficiently large number of geodesic paths crucial for determining the actual ridge curve.
Subsequently, we run an arbitrary geodesic solver (provided the result is sufficiently accurate) on the extended surface.
Finally, the ridge curve within a triangle is obtained through an incremental hyperplane cutting operation, similar to
the approach demonstrated in Xin et al. (2022). Refer to Fig. 2 for an illustration of the procedure. We shall detail each
stage in the following subsections.

3.1. Rough ridge curve
As discussed in Section 2, several graph-based algorithms aim to find the initial ridge curve by treating the input

polygonal surface as a graph. In our approach, we adopt the strategy proposed by Erickson and Whittlesey (2005) for
this purpose. By implementing Dijkstra’s algorithm, we obtain a shortest path tree that follows the mesh edges. One
can take its dual as the initial ridge curve, assuming the input model has a genus of zero. For models with higher genera,
an additional step is required to extract non-trivial cycles. (Details will be elaborated later.)

However, it’s important to note that the initial ridge curve is distinct from the target ridge curve. The main difference
lies in the fact that the graph-based ridge curve is distributed over the triangular surface and closely tied to the
triangulation. In contrast, the target ridge curve we aim to compute should be independent of triangulation and capable
of revealing the underlying geometric variations. Therefore, to obtain the significant portion, we need to carefully
invent a pruning mechanism that preserves connectivity.

Genus-0 models. Consider a mesh edge 𝑣1𝑣2. If either 𝑣1 provides the shortest distance to 𝑣2 or vice versa, we
designate 𝑣1𝑣2 as a segment of the shortest path tree 𝑇 . Let’s assume that the two faces sharing 𝑣1𝑣2 are 𝑓𝑖 and 𝑓𝑗 .
If 𝑣1𝑣2 ∉ 𝑇 , then 𝑓𝑖 and 𝑓𝑗 form a pair of “contiguous” triangles. The dual of 𝑇 , denoted as 𝑇 ∗, can be defined
by enumerating all such “contiguous” triangles. See Figure 3 for an illustration. In the following, we discuss the
significance of a pair of “contiguous” triangles. We define the significance of 𝑣1𝑣2 as the area of all the triangles
enclosed by 𝜋(𝑠, 𝑣1) ∪ 𝜋(𝑠, 𝑣2) ∪ 𝑣1𝑣2, where 𝜋(⋅, ⋅) denote the operation of taking the shortest path.

To be more precise, 𝜋(𝑠, 𝑣1) ∪ 𝜋(𝑠, 𝑣2) ∪ 𝑣1𝑣2 split the genus-0 surface into parts, we denote the two areas by
Area+𝑣1𝑣2 and Area−𝑣1𝑣2 . The significance of 𝑣1𝑣2 is given by the smaller one, i.e.,

𝐼(𝑣1𝑣2) = min(Area+𝑣1𝑣2 ,Area−𝑣1𝑣2 ).

In the following, we shall explain why the connectivity of the ridge curve remains unchanged for any tolerance. Take
Figure 4 for an example. We assume that by choosing some tolerance, the edge 𝑣1𝑣2 has been removed from 𝑇 ∗, making
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𝑠

(a) Front view (b) Back view
Figure 3: The source point is denoted as 𝑠. By running Dijkstra’s algorithm, we obtain the shortest path tree 𝑇 . The dual
structure, 𝑇 ∗, is visualized in red.

Figure 4: The thick black lines represent the shortest path, while the red lines indicate the ridge curve. 𝜋(𝑠, 𝑣1)∪𝜋(𝑠, 𝑣2)∪𝑣1𝑣2
divides the genus-0 surface into segments with respective areas Area+𝑣1𝑣2 and Area−𝑣1𝑣2 . To quantify the significance of 𝑣1𝑣2,
we define its importance as 𝐼(𝑣1𝑣2) = min(Area+𝑣1𝑣2 ,Area−𝑣1𝑣2 ), ensuring that the connectivity of the ridge curve remains
unchanged for any tolerance.

the ridge curve broken when it crosses 𝑣1𝑣2. Since 𝜋(𝑠, 𝑣1) ∪ 𝜋(𝑠, 𝑣2) ∪ 𝑣1𝑣2 divides the surface into two parts, the
ridge curve still partially exists in both parts. Suppose that 𝑣3𝑣4 is located in the portion that defines 𝐼(𝑣1𝑣2). Then it
is easy to know that

𝐼(𝑣3𝑣4) < 𝐼(𝑣1𝑣2),

which contradicts the assumption that the ridge curve still partially exists in both parts. If 𝐼(𝑣1𝑣2) is given by another
part, then we have

𝐼(𝑣5𝑣6) < 𝐼(𝑣1𝑣2),

which also leads to a contradiction. Therefore, while the definition of significance may seem straightforward, the most
notable feature is that it ensures the ridge curve, even after pruning, remains a connected component. It’s also worth
noting that the maximum possible tolerance cannot exceed one-half of the area of the whole surface; otherwise, the
ridge curve becomes empty.

Fig. 5 illustrates how we transition from the significance of the original model edges to the vertices of the
𝑇 ∗ structure. Suppose that at each vertex 𝑖 of the dual structure 𝑇 ∗, we define A[𝑖] to be the area of the triangle
corresponding to this vertex. In our definition, every edge 𝑢𝑣 that is not in the shortest path structure 𝑇 will always
correspond to an edge 𝑢′𝑣′ in the dual structure 𝑇 ∗. The 𝐼(𝑢𝑣) is equivalent to the part of 𝜎𝑢′ and 𝜎𝑣′ that minimizes the
sum of triangle face area values of all vertices in the two parts after 𝑢′𝑣′ is disconnected in the dual structure, namely:

𝐼(𝑢𝑣) = min(Σ𝑖∈𝜎𝑢′ A[𝑖], Σ𝑖∈𝜎𝑣′ A[𝑖])
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Figure 5: In the figure, we show that an edge 𝑢𝑣 on the original model that is not part of the shortest path can always
correspond to an edge 𝑢′𝑣′ on the dual structure 𝑇 ∗, and we define the connected branch of 𝑢′ as 𝜎𝑢′ and the connected
branch of 𝑣′ as 𝜎𝑣′ after removing the edge 𝑢′𝑣′ from the dual structure 𝑇 ∗.

Given the definition above, we understand that the significance of an edge is actually the accumulation of face area
values from all vertices in the smaller of the two branches it separates. We define this value as Acc, as presented in
Fig. 5, Acc[𝑢′] represents the sum of triangle areas in branch denoted as 𝜎𝑢′ .

To get the accumulated areas Acc, we begin traversing 𝑇 ∗ from the degree one vertices whose accumulation value
is simply their corresponding face areas. If we encounter a vertex 𝑢 with degree two, we record the accumulated value
𝑢 as Acc[𝑢] = min(𝜙(𝑢), Area𝑡𝑜𝑡𝑎𝑙 − 𝜙(𝑢)) where 𝜙(𝑢) = Acc[𝑣] + A[𝑢] , 𝑣 is the previous vertex during traversal.

If we encounter a vertex 𝑤 of degree three, we would like to store the value Acc[𝑣] in a map that can be used for
latter reference. If one value Acc[𝑢] already exists in the corresponding map, the accumulation value of 𝑤 is defined
as min(𝜙(𝑤), Area𝑡𝑜𝑡𝑎𝑙 − 𝜙(𝑤)) where 𝜙(𝑤) = Acc[𝑢] + Acc[𝑣] + A[𝑤] and 𝑣 is the previous vertex during traversal.
Subsequently the traversal continues by considering the vertex 𝑤 as a vertex of degree one. The algorithm terminates
when all vertices have corresponding accumulate values assigned. Pseudocode for this part is provided in the appendix.

Figure 6: The two models on the left are of genus 0, while the two models on the right are high-genus. The blue triangles
represent non-contractible topological cycles, while the red triangles depict those significant branches of 𝑇 ∗ after being
pruned by a certain tolerance.

Models of arbitrary genus. Suppose that 𝐸 is the edge set of the input model. According to Erickson and
Whittlesey (2005), for high-genus models, the following edge set is not empty:

{𝑒 ∣ 𝑒 ∉ 𝑇 && 𝑒 ∉ 𝑇 ∗},

which defines the non-contractible topological cycles.
A significant distinction between genus-0 models and high-genus models is that non-contractible topological cycles

cannot be removed from 𝑇 ∗. Doing so would result in an inconsistency between the topology of the ridge curve
and the base surface. Let 𝑣1𝑣2 be one mesh edge contributing to the non-contractible topological cycles (both the
two faces incident to 𝑣1𝑣2 are located on the non-contractible topological cycles; See Figure 6). In this situation,
𝜋(𝑠, 𝑣1) ∪ 𝜋(𝑠, 𝑣2) ∪ 𝑣1𝑣2 cannot split the surface into two parts. Instead, we have

Area+𝑣1𝑣2 = Area−𝑣1𝑣2 = Areatotal.
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According to the definition of significance, the significance of 𝑣1𝑣2 exactly equals the entire surface area. In fact, this
holds true for each mesh edge contributing to the non-contractible topological cycles. This further implies that as long
as the significance tolerance is less than the entire area, the non-contractible topological cycles persist.

3.2. Computing accurate geodesic ridges

(a) (b) (c) (d)

Figure 7: (a-b) We can cut the model apart along the cut locus. (c) shows a one-ring extension, where the red triangle
produces two copies, allowing for geodesic paths to enter the triangle from two different directions. (d) An alternative
visualization of the one-ring extended surface.

3.2.1. Extending the surface
Recall that although the cut locus is approximate, it roughly represents the points where geodesic distance stops

increasing. To find the actual ridge points, we need to allow geodesic paths to enter a triangle from various possible
directions. Therefore, we need to extend the surface from the cut locus. Suppose that 𝐹 (1) is the triangles incident to the
cut locus. We can add 𝐹 (1) to the original face set 𝐹 , which we call a 1-ring extension. In this way, we can specify an
arbitrary 𝑘, yielding the 𝑘-ring extended surface; See Figure 7 for an illustration. However, a too-large 𝑘 is unnecessary.
Indeed, surface extension is a dynamic process, and the initial selection of 𝑘 is not as critical. Moving forward, we will
provide more specific descriptions.

3.2.2. Geodesic distances on the extended surface
To achieve this, we can run any geodesic solver on the extended surface. Taking△𝑣1𝑣2𝑣3 as an illustrative example,

we use {△𝑖𝑣1𝑣2𝑣3}𝑚𝑖=1 to denote its copies during the surface extension. After running the geodesic solver, each mesh
vertex of the extended surface has the shortest distance to the source point. We assume that the change in the distance
value within each triangle is linear. Note that different copies of the same triangle may have different linear distance
fields.

Let 𝑑𝑖1, 𝑑
𝑖
2, 𝑑

𝑖
3 be the shortest distances at the three vertices of the 𝑖-th copy of △𝑣1𝑣2𝑣3. We have an interesting

observation that if
𝑑𝑖1 > 𝑑𝑗1, 𝑑𝑖2 > 𝑑𝑗2, 𝑑𝑖3 > 𝑑𝑗3,

then the 𝑖-th copy of △𝑣1𝑣2𝑣3 does not contribute to determining the actual ridge curve. Therefore, we advocate
extending the surface on the fly. The extension process stops if no triangles can provide geodesic distances that
contribute to the actual ridge curve. In other words, there is no need to determine the number of rings to extend
the surface in the very beginning.

Remark The selection of geodesic solver primarily depends on the user’s varying requirements for accuracy and speed.
Using a exact geodesic solver (e.g., MMP algorithm (Mitchell et al., 1987)) yields a more accurate computation of the
cut locus. However, this precision comes at the cost of increased computational time. Conversely, approximate geodesic
solver (e.g., Fast Marching algorithm (Kimmel and Sethian, 1998)) sacrifice some accuracy but offer faster computation
speeds. These approximate solvers are particularly suitable for scenarios prioritizing computational efficiency over
absolute precision. By understanding the trade-offs between accuracy and speed, users can select the most suitable
geodesic solver for their specific application needs.
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(a) (b) (c) (d)

Figure 8: (a) Place a triangle located on the model onto a two-dimensional plane. (b) Using the triangle from (a) as a base,
form an infinitely tall triangular prism. (c) Cut the prism using half-planes, preserving the portion below the half-plane. (d)
After all the plane cutting operations are done, project the roof structure onto the plane of the triangle, yielding the ridge
structure within △𝑣1𝑣2𝑣3.

3.2.3. Computing accurate geodesic ridges
To compute the accurate geodesic ridge curve, we adopt the incremental cutting method inspired by Xin et al.

(2022). Let 𝑑𝑖1, 𝑑
𝑖
2, 𝑑

𝑖
3 be the shortest distances at the three vertices of the 𝑖-th copy of △𝑣1𝑣2𝑣3. We place triangle

△𝑣1𝑣2𝑣3 on a 2D plane. We can use a half-plane 𝜋𝑖 to define the linear field given by 𝑑𝑖1, 𝑑
𝑖
2, 𝑑

𝑖
3, where 𝜋𝑖 passes

through the following three vertices:

(𝑥1, 𝑦1, 𝑑𝑖1), (𝑥2, 𝑦2, 𝑑
𝑖
2), (𝑥3, 𝑦3, 𝑑

𝑖
3).

Our objective is to find the lower envelope of these half-planes. We construct an infinite triangular prism with
△𝑣1𝑣2𝑣3 as the base and then incrementally cut the volume by {𝜋𝑖}𝐾𝑖=1, following a similar approach to Du et al.
(2021). After all the plane cutting operations are done, we project the roof structure onto the plane of the triangle,
yielding the ridge structure within △𝑣1𝑣2𝑣3. We demonstrate this process in Figure 8.

4. Evaluation
We conducted comparative experiments and demonstrated the utility of our algorithm in several scenarios. The

code is written in C++. The results presented below were obtained on a computer equipped with a 2.5GHz Intel
i5-12400F CPU running Windows 11 as its operating system.

4.1. Comparison with the state of the arts
Among the existing methods for computing ridges, Mancinelli et al. (2021) stands out due to its impressive

computational speed. The method infers ridges by utilizing gradient information within triangles and refines the
computed ridges through post-processing to ensure adherence to the correct topology. It provides a practical and
computationally efficient tool for extracting ridges. However, due to imprecise gradient information of the computed
triangles, the calculated ridges often exhibit significant errors, especially when the triangles are large or the quality of
the triangular mesh is poor. Based on our tests, their algorithm is not numerically robust, leading to frequent failures on
many models. In Fig. 9, we present a comparison between our algorithm and Mancinelli et al. (2021). It is known that
the cusps of geodesic isolines denote non-differential points, indicating the presence of ridges. It can be observed that
our algorithm consistently reports the actual ridge curve, while Mancinelli et al. (2021) shows considerable deviation
from the real ridges. In Fig. 10, we showcase a gallery of results computed by our algorithm.

4.2. Precise geodesic isolines
Traditional texturing algorithms for visualizing the isolines of a distance field suffer from linear interpolation,

resulting in conspicuous artifacts and missing sharp corners. This occurs due to the loss of information within triangles
as a result of direct linear interpolation, causing the displayed texture to lose the sharpness of the geodesic isolines.
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Ours

Mancinelli

Figure 9: Visual comparison of our method against Mancinelli et al. (2021). Our results are significantly better as they
align well with the cusps of the geodesic isolines. In contrast, Mancinelli et al. (2021) produces a conspicuous deviation
from the actual setting; See the highlighted windows.

Figure 10: A gallery of ridge results obtained through our algorithm.

However, by embedding the ridge curve into the triangle mesh, the ridges are visually superior; See Figure 11.
This contrast validates the idea that the ridge curve is helpful for the piecewise linear representation of the geodesic
distance field.

4.3. Precise geodesic distance query
In conventional geodesic distance algorithms, if we need to calculate the distance field within a triangle, the most

direct method is to perform linear interpolation using the distance values at the three vertices of the triangle. However,
for triangles crossing the ridge curve mentioned above, linear interpolation is not suitable, as the distance change is not
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Figure 11: If we directly visualize the distance field using the texturing technique, numerous artifacts are present, as seen
in the results on the left. However, by embedding the ridge curve into the triangle mesh, the ridges on the right (with the
embedded ridge curve) are visually superior. Note that only triangles crossed by the ridge curve are split into smaller ones,
resulting in a slight increase in the number of triangles. This observation validates the idea that the ridge curve is helpful
for the piecewise linear representation of the geodesic distance field.

Model teddy (0.2k) bottle (1k) bunny (1k) cheburashka (3k) armadillo (4k) trim_star (10k) knot_high (16k)
VTP Mean Error (%) 0.8412 0.9761 0.4427 0.2201 0.1966 0.2243 0.0421

Fast Marching Mean Error (%) 3.5097 3.8547 2.8011 1.8077 1.9017 1.7450 1.0007
Ours Mean Error (%) 0.5037 0.7645 0.1945 0.0884 0.0726 0.0312 0.0150

Table 1
We embed the sampling points onto the surface and use VTP to obtain accurate distance values for the sampling points,
serving as the benchmark for comparison. Subsequently, we calculate the average error of the distance values for each
algorithm by evaluating all sampling points. The highest precision scores are highlighted in bold.

linear in these triangles. Linear interpolation cannot approximate the real distance change, leading to low estimation
precision.

To better demonstrate the advantages of our algorithm, we randomly select some points on the surface of the original
model and then embed them into the mesh surface, making the sampled points become vertices. By this trick, we can
get the ground-truth distance values for comparison. We can see from Table 1 that even if we run the VTP algorithm
to accurately compute the distance to mesh vertices, linear interpolation still causes low precision. In contrast, if we
further slice each triangle along the ridge curve, the query accuracy significantly increases; See the highest precision
scores highlighted in bold in Table 1.

4.4. Ablation study
Results under different tolerance. In the preceding sections, we defined the significance 𝐼(𝑢𝑣) of edge 𝑢𝑣 ∈ 𝑇 ∗

and explained how we can prune the dual structure by setting a tolerance, allowing for a clearer and simpler presentation

W. Liu, P. Wang, et al.: Preprint submitted to Elsevier Page 10 of 13



Geodesic Ridge Curve Computation

of the rough ridge lines obtained in the first step. In the specific implementation, we introduced a threshold for the ratio
of the area represented by significance, denoted as 𝐼(𝑢𝑣), to the surface area Area𝑡𝑜𝑡𝑎𝑙 of the model. For parts where
the ratio 𝐼(𝑢𝑣)∕Area𝑡𝑜𝑡𝑎𝑙 is less than the given threshold 𝑡𝑜𝑙, we directly discard them. The tolerance holds significant
importance in our approach. As the tolerance value decreases, the computed cut locus covers more regions of the model.
An example is presented in Fig. 12, demonstrating the variations in the computed cut locus as the tolerance decreases.
It can be observed that reasonable results are obtained at any tolerance. For practical applications, we recommend
setting the default tolerance value to 0.025, which yields reasonable results in the vast majority of scenarios.

Figure 12: In the figure, we demonstrate the impact of setting different tolerances on the resulting exact ridge lines. Here,
we set a threshold for the ratio of significance 𝐼 to the total model surface area to ensure that the same threshold is
applicable to most models. The threshold on the far left is set too small, resulting in a large number of ridge lines being
trimmed, while the threshold on the far right is set too large, causing some less significant ridge lines to be retained.
However, our definition of significance ensures that the resulting limit structures are always continuous.

Cut locus for high complex models. To further validate our algorithm, we applied it to compute the cut locus of
various complex models, including geometrically intricate structures and high-genus models, among others, as shown
in Fig. 13. This experimentation aims to demonstrate the algorithm’s efficacy across a diverse range of challenging
scenarios.

Figure 13: Presentation of cut locus results for complex models.

Results under different mesh resolutions. In the algorithmic workflow, triangles are assumed to be the funda-
mental units where the distance field undergoes linear changes. Therefore, the resolution of the model significantly
influences the computation results. By adjusting the resolution of the model, we computed the cut locus results
separately, aiming to investigate the impact of model resolution on cut locus results. The results are illustrated in
Fig. 14.

5. Conclusion, limitations and future work
In this paper, we propose a numerically robust method for computing geodesic ridge curves, which is a notoriously

hard problem. With the help of extracted ridge curves, we can yield a region-wise linear representation of the geodesic
distance field. Our algorithm consists of two steps: first finding a rough ridge curve and then refining it into the correct
configuration by simply calling an accurate geodesic solver.
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Figure 14: Presentation of cut locus results obtained at different model resolutions. We annotated the number of Faces
(F) in the figure.

Our algorithm possesses at least two key properties that distinguish it from existing algorithms. First, we introduce
a pruning mechanism such that an arbitrary pruning parameter can ensure the connectivity of the ridge curve. Second,
our algorithm supports any geodesic solver to provide geodesic distances. Even with the fast marching method, our
algorithm can yield a smooth and clean ridge curve that aligns well with the cusps of geodesic isolines. We demonstrate
its utility in accurate geodesic distance querying and high-fidelity visualization of geodesic iso-lines.

Our algorithm, still needs to be improved. Firstly, our algorithm is relatively slow and can be further accelerated.
Secondly, our current algorithm is designed for triangle mesh, with limited scalability. In the future, we will explore
the possibility of speeding up the computation and extending our algorithm to parameter surfaces.
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A. Pseudocode
Algorithm 1: Area Accumulation Scheme

Input: Dual structure 𝑇 ∗, Areas for each face 𝐴
Output: Accumulation values Acc at each vertex of 𝑇 ∗

1 𝑉1 ← The degree 1 nodes in 𝑇 ∗;
2 Area𝑡𝑜𝑡𝑎𝑙 ←

∑

𝐴(𝑓 );
3 for 𝑣 ∈ 𝑉1 do
4 Acc[𝑣] = A[𝑣];
5 𝑣𝑙𝑎𝑠𝑡 ← 𝑣;
6 𝑣𝑛𝑒𝑥𝑡 ← next vertex for 𝑣;
7 while 𝐷𝑒𝑔𝑟𝑒𝑒(𝑣𝑛𝑒𝑥𝑡) = 2 do
8 𝜙[𝑣𝑛𝑒𝑥𝑡] ← Acc[𝑣𝑙𝑎𝑠𝑡] + A[𝑣𝑛𝑒𝑥𝑡];
9 Acc[𝑣𝑛𝑒𝑥𝑡] ← min(𝜙[𝑣𝑛𝑒𝑥𝑡], Area𝑡𝑜𝑡𝑎𝑙 − 𝜙[𝑣𝑛𝑒𝑥𝑡]);

10 𝑣𝑙𝑎𝑠𝑡 ← 𝑣𝑛𝑒𝑥𝑡;
11 𝑣𝑛𝑒𝑥𝑡 ← next vertex for 𝑣𝑛𝑒𝑥𝑡;
12 end
13 if 𝐷𝑒𝑔𝑟𝑒𝑒(𝑣𝑛𝑒𝑥𝑡) = 3 then
14 if 𝑣𝑛𝑒𝑥𝑡 has a recorded values 𝜙[𝑣] in the map then
15 𝜙[𝑣𝑛𝑒𝑥𝑡] ← 𝜙[𝑣] + 𝜙[𝑣𝑙𝑎𝑠𝑡] + A[𝑣𝑛𝑒𝑥𝑡];
16 Acc[𝑣𝑛𝑒𝑥𝑡] ← min(𝜙[𝑣𝑛𝑒𝑥𝑡], Area𝑡𝑜𝑡𝑎𝑙 − 𝜙[𝑣𝑛𝑒𝑥𝑡]);
17 𝑣𝑙𝑎𝑠𝑡 ← 𝑣𝑛𝑒𝑥𝑡;
18 𝑣𝑛𝑒𝑥𝑡 ← unvisited neighbor;
19 Goto 7;
20 else
21 store 𝜙[𝑣𝑙𝑎𝑠𝑡] in the map with 𝑣𝑛𝑒𝑥𝑡 as the key;
22 end
23 end
24 end
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