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Abstract—Extraction of a high-fidelity 3D medial axis is a crucial oper-
ation in CAD. When dealing with a polygonal model as input, ensuring
accuracy and tidiness becomes challenging due to discretization errors
inherent in the mesh surface. Commonly, existing approaches yield
medial-axis surfaces with various artifacts, including zigzag boundaries,
bumpy surfaces, unwanted spikes, and non-smooth stitching curves.
Considering that the surface of a CAD model can be easily decomposed
into a collection of surface patches, its 3D medial axis can be extracted
by computing the Voronoi diagram of these surface patches, where each
surface patch serves as a generator. However, no solver currently exists
for accurately computing such an extended Voronoi diagram. Under the
assumption that each generator defines a linear distance field over a
sufficiently small range, our approach operates by tetrahedralizing the
region of interest and computing the medial axis within each tetrahe-
dral element. Just as SurfaceVoronoi computes surface-based Voronoi
diagrams by cutting a 3D prism with 3D planes (each plane encodes a
linear field in a triangle), the key operation in this paper is to conduct the
hyperplane cutting process in 4D, where each hyperplane encodes a
linear field in a tetrahedron. In comparison with the state-of-the-art, our
algorithm produces better outcomes. Furthermore, it can also be used
to compute the offset surface.

Index Terms—digital geometry processing, CAD models, medial axis
(MA), Voronoi diagram, piecewise linear field.

1 INTRODUCTION

Voronoi diagrams serve the purpose of partitioning a given
space into subregions based on proximity. Beyond their
direct applications in proximity queries and collision detec-
tion [1, 2], Voronoi diagrams find utility in a diverse range
of fields, including surface reconstruction [3], robot motion
planning [4], non-photorealistic rendering [5], surface sim-
plification [6], mesh generation [7], and shape analysis [8],
among others.

Voronoi diagrams showcase numerous variants depend-
ing on specific domains, metrics, and generator types, with
the most commonly employed version defined in Euclidean
spaces using point generators. In digital geometry pro-
cessing, a fundamental research task involves partitioning
a 2-manifold surface into curved Voronoi cells based on
geodesic distances. In this scenario, the 2-manifold surface
serves as the domain, the geodesic distance functions as the
metric, and the user-specified point set acts as the genera-
tors. A recent advancement by Xin et al. [9] introduces an
extensible approach known as SurfaceVoronoi for comput-
ing Voronoi diagrams on surfaces and their variants. Sur-
faceVoronoi operates under the assumption that mesh tri-
angles are small in size and that the triangle-wide geodesic

distance field, provided by a single generator, can be consid-
ered linear. Leveraging this assumption, SurfaceVoronoi en-
ables each generator to simultaneously propagate distances
until all contributing generators for each triangle are identi-
fied. Ultimately, for each triangle, SurfaceVoronoi calculates
the surface-restricted Voronoi structure by elevating each 2D
linear field to a 3D plane and extracting the lower envelope
of a roof-like structure.

This paper explores the 3D Voronoi diagram of a set
of non-intersecting surface patches. We aim to enhance
SurfaceVoronoi to tackle this challenge, recognizing that the
extension must contend with the increase in dimensions
compared to surface-restricted Voronoi diagrams, which are
inherently 2D. In practical applications, the Voronoi diagram
of surface patches or even 3D objects proves significantly
useful for understanding how objects interact or relate spa-
tially. For instance, Zhao et al. [10] proposed using bisec-
tors between two 3D objects to describe their topological
relationships. In the realm of robotics and autonomous
systems, the extended Voronoi diagram facilitates the rapid
identification of safe paths to avoid collisions or obstacles
between 3D objects [11].

While the resulting distance field from a single surface-
patch generator can be arbitrarily complex in the entire
R3 space, it can be as simple as a linear function when
confined to a small range. This allows us to encode the
distance field within a small tetrahedral cell, contributed
by a single generator, using a straightforward quadruple.
In its nature, this representation signifies a 4D plane, with
the first three dimensions denoting coordinates and the
fourth dimension illustrating distance variation. Initially,
we generate the initial 4D volume rooted at a tetrahedral
element by sweeping the base tetrahedron along the fourth
dimension. Our approach begins with the tetrahedralization
of the space of interest. Similar to SurfaceVoronoi [9], the
first stage involves propagating straight-line distances from
the generators until no generator can offer a smaller distance
for any tetrahedral element. Subsequently, we preserve the
surviving generators and their corresponding linear dis-
tance fields for each tetrahedron. The second stage involves
decomposing each tetrahedron into sub-domains through a
sequence of 4D hyperplane cutting operations. Finally, the
lower envelope of the 4D roof-like structure, when projected
back into 3D, defines the decomposition configuration of the
base tetrahedron. Given that the surface of a CAD model can
be readily decomposed into a collection of simple patches,
we innovatively apply the extended Voronoi diagram to



2

Fig. 1. This paper suggests computing the medial axis of CAD models via Voronoi diagrams of surface patches, treating each patch as an individual
computational unit. Interestingly, this computational technique can also be used to calculate offsets. Top: Input polygonal models (surface patches
are visualized in a color-coded style). Middle: Medial-axis surfaces. Bottom: Inward offset surfaces.

compute medial-axis surfaces. Extensive experimental re-
sults demonstrate that our medial-axis extraction algorithm
significantly outperforms the state-of-the-art in terms of
accuracy and noise insensitivity. Furthermore, our algorithm
can even be used to compute the offset surface.

Our contributions are three-fold:

• We extend SurfaceVoronoi to compute the Voronoi
diagram of a collection of surface patches, addressing
a challenging task in past research.

• The fundamental operations are elevated from 3D
to 4D, enabling the computation of the extended
Voronoi diagram, confined within a tetrahedron,
through a sequence of 4D hyperplane cutting.

• We innovatively apply the new algorithm to compute
medial-axis surfaces and demonstrate its superior
performance. Additionally, we discuss more poten-
tial application scenarios.

2 RELATED WORKS
2.1 Conventional Voronoi Diagrams
Suppose that we have a set of generators S = {si}ni=1 in a
given domain Ω that is equipped with a metric function D,
the Voronoi diagram involves partitioning Ω into regions
such that the generator si dominates a region

{x ∈ Ω
∣∣ D(si, x) ≤ D(sj , x), j ̸= i}. (1)

The most prevalent version assumes that Ω represents Eu-
clidean spaces, and the generators are exclusively points.
The definition of Voronoi diagrams may vary with domains,
metrics, and generator types. Voronoi diagrams, as a funda-
mental tool, have found widespread applications in com-
puter graphics [12, 13, 14, 15] and image processing [16, 17].

There is a substantial body of literature on the com-
putation of Voronoi diagrams, particularly for computing
the Voronoi diagram of point-type generators in Euclidean
spaces. The most commonly used methods include the
divide-and-conquer scheme [18], the incremental construc-
tion method [19], and Fortune’s sweep line algorithm [20].
Moreover, it should be noted that the lifting technique

transforms the Voronoi diagram problem into a convex
hull problem by elevating the computation to a higher-
dimensional space [21]. Subsequently, parallelization tech-
niques have been applied to the construction of Voronoi
diagrams [22, 23, 24].

Voronoi diagrams find diverse applications in digital
geometry processing. One common application involves
defining the influence area of a mesh vertex, relying on
the principles of Voronoi diagrams. Choi et al. [25] utilized
Voronoi diagrams in a novel 3D printing approach. This
method, compared to traditional lattice methods, effectively
reduces stress concentration and eliminates the need for ad-
ditional support structures. Xu et al. [13] leveraged Voronoi
diagrams to predict normals for undirected point clouds. To
tackle the challenge of polygon meshes being unsuitable for
learning-based applications, Maruani et al. [26] introduced
a unique and differentiable surface representation using
Voronoi diagrams.

2.2 Extended Voronoi Diagrams
In practical applications, Voronoi diagrams may have vari-
ant versions based on specific requirements. For instance,
generators may include line segments [27, 28, 29]. Xu et
al. [30] investigated the computation of geodesic Voronoi
diagrams on a mesh surface, employing polylines as gener-
ators. Zong et al. [12] adopted the concept of the Voronoi
diagram between triangles and proposed an efficient point-
to-mesh distance query algorithm. While Voronoi diagrams
with line-segment or surface-patch generators can be re-
duced to a standard Voronoi diagram by sampling gener-
ators into a finite set of points, the results are less accurate,
and computation is time-consuming [31].

Conceptually, geodesic distances drive the Voronoi de-
composition of a curved surface, but computing geodesic
Voronoi diagrams is generally time-consuming [32]. The Re-
stricted Voronoi Diagram (RVD) [33, 34] considers surface-
restricted decomposition based on the proximity between
surface points. However, the dual of the RVD may not be a
manifold triangle mesh. Wang et al. [15] proposed a set of
provably effective strategies for addressing this issue. Xin et
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al. [9] introduced a triangle-based lifting technique, enabling
the computation of various surface-based Voronoi diagrams.
This method allows for the use of different metrics to
measure the distance between two points, such as exact
geodesic distances [35] or Euclidean distances. In addition,
there are some methods based on vector heat [36] and PDE-
based [37] approaches for computing geodesic Voronoi dia-
grams. These methods are computationally fast but sensitive
to the quality of triangulation.

There is a deep link between Voronoi diagrams and me-
dial axis surfaces [31]. Most of the existing approaches [38,
39] for computing medial-axis surfaces require sampling
points from the surface and computing a conventional
Voronoi diagram as part of the initialization process.
However, the discrete sampling operation can be time-
consuming and computationally demanding, especially
when the number of sample points is large. Additionally,
it may compromise the quality of the resulting medial-axis
surfaces or even lead to failure on certain thin-plate models.
Yan et al. [40] observed the medial axis of a voxel shape
can be accurately approximated by the interior Voronoi
diagram of the boundary vertices, referred to as the voxel
core. Their approach demonstrates exceptional accuracy in
approximating the medial axis of smooth shapes, ensur-
ing topological correctness when given a sufficiently high-
resolution voxelization of the shape. Wang et al. [41] ob-
served that the surface-restricted power cell of each medial
sphere indicates the tangential surface regions in contact,
aiding in classifying a medial sphere as being on a medial
sheet, a seam, or a junction. To the best of our knowledge,
this method represents the state-of-the-art in extracting the
medial axis surface of a CAD model. In this paper, we
extend SurfaceVoronoi [9] to address this challenging prob-
lem and demonstrate its utilities in computing medial-axis
surfaces and offset surfaces of a CAD model.

3 METHODOLOGY

3.1 Review on SurfaceVoronoi

SurfaceVoronoi [9] processes a polygonal surface as its input
and operates under the assumption that the geodesic dis-
tance field at the triangle level, provided by a single gener-
ator, can be treated as linear. The SurfaceVoronoi algorithm
primarily consists of two stages: distance over-propagation
and incremental half-plane cutting.

3.1.0.1 Distance over-propagation.: Given a set of
source points S = {si}ni=1 on a triangle mesh surface,
the algorithm allows each generator to propagate distances
simultaneously while maintaining priorities through a pri-
ority queue. Distances propagate across triangles, and each
triangle retains a list of surviving generators.

Without loss of generality, let f = △v1v2v3 represent
one of the triangles of the surface. The distances of v1, v2, v3
are initialized to ∞. When a new generator propagates
its distances to f , the decision of whether the generator
should be kept in f is based on competition with existing
generators. Let s1, s2, · · · , sk be the surviving generators in
f , and sk+1 be the new generator. If there exists a surviving
generator si (1 ≤ i ≤ k) such that:

D(sk+1, v1) ≥ D(si, v1),

D(sk+1, v2) ≥ D(si, v2), (2)
D(sk+1, v3) ≥ D(si, v3),

then sk+1 is labeled as an invalid generator for f , preventing
its propagation to neighboring faces. At the end of the
distance over-propagation stage, each triangle accumulates
a list of surviving generators and corresponding distance
triples.

(a) (b) (c)

Fig. 2. SurfaceVoronoi involves a step of incremental plane cutting,
as illustrated in (a) the original triangular prism, (b) after one cutting
operation, and (c) after two cutting operations. The red-colored line
segment represents the triangle-restricted Voronoi diagram.

3.1.0.2 Incremental half-plane cutting.: It is straight-
forward to map f = △v1v2v3 onto a 2D plane, with the new
vertex coordinates being

(x1, y1), (x2, y2), (x3, y3). (3)

Each surviving generator of f defines a lifting 3D plane π
passing through

(x1, y1, d1), (x2, y2, d2), (x3, y3, d3), (4)

where d1, d2, d3 are the distances from the generator to
v1, v2, v3, respectively. π can be implicitly represented as an
equation:

d = ax+ by + c. (5)

The lower envelope of the planes established by the sur-
viving generators of f shapes a roof-like structure, using
△v1v2v3 as the base. Consequently, through a series of
plane-cutting operations, the roof-like structure can be de-
fined, revealing the f -restricted Voronoi diagram; Refer to
Fig. 2.

3.2 Linear Representation of Scalar Field in a Tetrahe-
dron
Similar to SurfaceVoronoi, we assume that the tetrahedron-
range distance field for a single source si (potentially a
surface patch in this paper) undergoes linear changes. Let
t be a tetrahedron with four vertices

v1(x1, y1, z1), v2(x2, y2, z2), v3(x3, y3, z3), v4(x4, y4, z4),
(6)

and the distance values given by the generator si be
di1, d

i
2, d

i
3, d

i
4, respectively. The linear change restricted in t

can be characterized by an equation

d = aix+ biy + ciz + wi, (7)
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where ai, bi, ci, wi can be found by solving
xv1 yv1 zv1 1
xv2 yv2 zv2 1
xv3 yv3 zv3 1
xv4 yv4 zv4 1



ai
bi
ci
wi

 =


di1
di2
di3
di4

 . (8)

The coefficient matrix is invertible as long as the tetrahedron
is not degenerate, ensuring the existence and uniqueness of
the solution.

To this end, Eqn. (7) defines a hyperplane in 4D, where
the first three dimensions represent coordinates, and the
fourth dimension illustrates distance variation. We assume
that the tetrahedron t has two surviving generators si
and sj . The intersection of their corresponding hyperplanes
can be represented as follows:{

aix+ biy + ciz + wi = d

ajx+ bjy + cjz + wj = d.
(9)

By subtracting the two equations, d is eliminated:

(ai − aj)x+ (bi − bj)y + (ci − cj)z + (wi − wj) = 0, (10)

which indicates that the intersection between 4D linear
fields defines a 3D plane.

(a) (b) (c)

Fig. 3. Just as a rectangle (a) and a box (b) can be generated by
sweeping a line segment and a rectangle along an additional dimension,
respectively, we envision the creation of an initial 4D triangular prism by
sweeping a 3D tetrahedron along the fourth dimension (c). In (b) and
(c), a 2D side face and a 3D side face are visualized in brown.

3.3 Geometric View on Tetrahedron-range Linear
Scalar Field
Fig. 3 illustrates the generation of a 4D triangular prism by
sweeping a 3D tetrahedron t along the fourth dimension
(extending a triangular prism from 3D to 4D). We need to
initialize a 4D triangular prism for each 3D tetrahedron. As
d ≥ 0 in our context, we elevate t to 4D and consider it as
the bottom face of the 4D triangular prism:

(x1, y1, z1, 0), (x2, y2, z2, 0), (x3, y3, z3, 0), (x4, y4, z4, 0).
(11)

The top face of the 4D triangular prism is:

(x1, y1, z1,∞), (x2, y2, z2,∞), (x3, y3, z3,∞), (x4, y4, z4,∞).
(12)

The 4D triangular prism has four vertical edges, respectively
connecting (xi, yi, zi, 0) and (xi, yi, zi,∞), i = 1, 2, 3, 4. It
is bounded by a total of six hyperplanes, i.e., the top, the
bottom, and four side tetrahedral faces. In 4D space, each
vertex is formed by the intersection of four hyperplanes.
Taking the initial 4D triangular prism as an example, each
vertex is created by the intersection of three hyperplanes

generated by the prism’s three side faces, along with either
the base face or the top face. Similarly, edges in 4D space are
formed through a comparable process. We illustrate how an
initial 4D triangular prism is intersected by a 4D hyperplane,
as shown in Figure 4.

(d) (e) (f)

(a) (b) (c)

Fig. 4. Illustration of how an initial 4D triangular prism is intersected by
a 4D hyperplane: (a) Base face. (b-e) Four 3D side faces generated by
sweeping the tetrahedral sides along the fourth dimension. (f) Top face.

4 ALGORITHM
By considering a set of generators (typically surface patches)
in R3 as input, we consider computing the Voronoi dia-
gram for these generators. Our algorithm begins with a
tetrahedralization of the input, allowing the computation of
the complex Voronoi diagram within a tetrahedron range.
Subsequently, the Voronoi diagram is calculated through
distance over-propagation and incremental hyperplane cut-
ting. The individual steps are detailed in the following
subsections.

4.1 Tetrahedralization
Our algorithm operates within a tetrahedralized space. In
general, the computation of the medial axis should be con-
fined to the interior volume enclosed by the input surface.
Therefore, the triangles of the original triangle mesh must
be embedded into the tetrahedralization results, and each
tetrahedron must be sufficiently small. We use fTetWild [42]
for this purpose. Additional evaluations regarding how the
size of the tetrahedralization affects accuracy can be found
in Section 5.2.

4.2 Incremental Hyperplane Cutting
At this point, we assume that the distance between any
tetrahedral vertex and any surface patch has been com-
puted, with the distance metric being the Euclidean dis-
tance. This task will be addressed in the next subsection.
Following this, we discuss the hyperplane cutting operation
within a tetrahedral element.

Given a quadruple (x, y, z, d), the quadruple is consid-
ered to be on the upper side of the hyperplane

πi : d = aix+ biy + ciz + wi
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if and only if

d ≥ aix+ biy + ciz + wi.

To trace the lower envelope, it is essential to maintain the
combination structure, comprising vertices, edges (connect-
ing two vertices), polygonal faces (formed by three or more
edges in a loop), polyhedral faces (having four or more
polygonal faces topologically equivalent to a polyhedron),
and the 4D convex volume. In our implementation, we must
simultaneously retain vertices, edges, polygonal faces, and
polyhedral faces.

When a new hyperplane π is introduced, the process
begins by eliminating existing vertices, edges, polygonal
faces, and polyhedral faces above π through simple tagging.
The next step involves identifying edges that intersect with
π. For the edge e = v1v2, if π(v1) = dv1 − (axv1 + byv1 +
czv1

+w) > 0 and π(v2) = dv2−(axv2+byv2+czv2+w) < 0,
a new vertex v is obtained using the formula:

v =
π(v1)

π(v1)− π(v2)
v2 −

π(v2)

π(v1)− π(v2)
v1. (13)

Following this, it is necessary to update the influenced
polygonal faces and polyhedral faces intersecting with π. To
elaborate further, if a polygonal face intersects with the hy-
perplane π at two points, then connecting these intersections
is necessary to form a new edge. Additionally, if π intersects
a sequence of polygonal faces, connecting these intersections
in a circular order results in the formation of a new 2D side
face. Following a similar process, 3D side faces can also
be computed. Finally, each 3D side face is determined by
two 4D hyperplanes. If the two hyperplanes that define a
3D side face do not belong to the initial six hyperplanes,
the resulting side face contributes to the lower envelope.
The lower envelope is then projected back onto the bottom
tetrahedron by eliminating the fourth dimension, resulting
in a Voronoi-like structure. It is also worth noting that
the final structure within a tetrahedral element consists of
polygons.

Furthermore, although several computational geome-
try libraries (e.g., CGAL [43]) provide robust geometric
predicates and kernels, indiscriminately replacing double
with exact data types may incur substantial algorithmic
inefficiencies. Thus, we need to develop robust algorithmic
implementations.

4.2.0.1 Handling numerical issues.: When comput-
ing the intersection between a hyperplane and an edge with
two endpoints v1, v2, it is crucial to determine the side of
each endpoint. According to Eqn. (13), if π(v1) and π(v2)
are close to 0, there may be a numerical issue. Therefore, we
introduce a tolerance ϵ to measure the degree to which π(v1)
and π(v2) are close to 0. We handle the numerical issues by
considering the following 8 cases:

1)
∣∣π(v1)∣∣ ≥ ϵ,

∣∣π(v2)∣∣ ≥ ϵ and π(v1) × π(v2) < 0:
Compute the intersection following Eqn. (13).

2) π(v1) ≥ ϵ and π(v2) ≥ ϵ: Deem the segment v1v2 to
be above π and discard the segment.

3) π(v1) ≤ −ϵ and π(v2) ≤ −ϵ: Allow the segment
v1v2 to survive.

4) π(v1) ≥ ϵ and
∣∣π(v2)∣∣ < ϵ: Deem the segment v1v2

to be above π and discard the segment.

5) π(v1) ≤ −ϵ and
∣∣π(v2)∣∣ < ϵ: Compute the intersec-

tion following Eqn. (13).
6)

∣∣π(v1)∣∣ < ϵ and π(v2) ≥ ϵ: Deem the segment v1v2
to be above π and discard the segment.

7)
∣∣π(v1)∣∣ < ϵ and π(v2) ≤ −ϵ: Compute the intersec-
tion following Eqn. (13).

8)
∣∣π(v1)∣∣ < ϵ and

∣∣π(v2)∣∣ < ϵ: Deem the segment v1v2
to be above π and discard the segment.

In our experimental setting, the value of ϵ is set to 10−9.
Based on our tests, most numerical issues can be addressed
in this way. Despite its practical usefulness, introducing
tolerance may not consistently resolve all numerical issues.
For example, we have identified some rare cases where a
hyperplane intersects with existing planes in more than two
points. In the event of such occurrences, we need to seek a
more robust implementation.

4.2.0.2 Robust implementation.: Considering that in
our algorithm, two key operations include:

1) Identifying on which side a point is located with
regard to a 4D plane.

2) Finding the intersection between an edge and a 4D
plane.

To overcome possible error accumulation, we encode each
intersection v ≜ (x, y, z, d)T with four 4D planes, similar
to [44], rather than directly using the approximate coordi-
nates. Each of the four 4D planes has an implicit form:

πi : g
T
i


x
y
z
d

+ wi = 0, i = 1, 2, 3, 4. (14)

To this end, the point v satisfies

Av +w = 0, (15)

where A = {g1,g2,g3,g4}T and w = {w1, w2, w3, w4}T .
To determine the side of v with regard to a new plane

π, we need to check whether gTv + w is positive or not,
where π is defined by g and w. In other words, we need to
compute the sign of the following expression:

gTA−1(−w) + w. (16)

If the value of the above expression is greater than or equal
to zero, a new vertex will be generated. Unlike the approxi-
mate incremental cutting method, we do not explicitly com-
pute the positions of new vertices (i.e., intersections between
line segments and hyperplanes). Instead, we encode the new
vertex by the four hyperplanes that define it. This technique
avoids the need to explicitly compute intersection points.
We also recommend using an exact numerical data type
(e.g., Gmpq in CGAL) to ensure computational accuracy. It
is important to note that using an exact data type to directly
compute intersections can result in increasingly complex
rational representations, which may significantly raise com-
putational costs. However, encoding each intersection using
four hyperplanes effectively mitigates this issue.
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4.3 Distance Field Propagation
In SurfaceVoronoi, a priority queue is utilized to maintain
the morphology of wavefronts propagating from near to
far, allowing for the simultaneous handling of distances
between different generators and triangles. In this process,
the computation of the geodesic distance and the distance
propagation are coupled. In our scenario, however, the
computation of the medial axis involves only Euclidean
distances. Therefore, we adopt a different strategy for in-
ferring distances. It requires the following steps to finish the
distance computation.

Initialization. We create a BVH structure for the entire
surface S . Additionally, we create a BVH structure for each
of its constituent patches γi, enabling efficient distance
queries. Each patch γi is composed of triangles, with the
surface S being the union of all such patches {γi}. After
that, with the support of the BVH of S , we find the closest
point v′ belonging to S for each tetrahedral vertex v. At the
same time, we record the surface patch that accommodates
v′.

Distance query. For each tetrahedron with four vertices
v1,v2,v3,v4, we perform the following operations:

Step 1. Initialize a standard queue Q to accommodate
v1, v2, v3, v4, and the surface patch set Γ to in-
clude the surface patches that provide distances to
v1, v2, v3, v4.

Step 2. Take out the top vertex v in Q and query the mini-
mum distance from v to S using the corresponding
BVH. If v’s nearest surface patch, say, γ′, does not
belong to Γ, perform hyperplane cutting using the
4D plane defined by γ′. Push all newly generated
vertices to Q.

Step 3. If Q is empty, the process terminates; otherwise, go
to Step 2.

Obviously, the above algorithm does not depend on
the order in which the tetrahedra are visited. Therefore, it
naturally lends itself to a parallel implementation.

4.4 Error Analysis
In this section, we provide an upper bound for the error
introduced by the linear approximation of a distance field
within a tetrahedron.

We denote any point inside the tetrahedron as x, with
d(x) representing the true distance value, and d̃(x) rep-
resenting the distance value obtained through linear ap-
proximation. They satisfy |∇d(x)| = 1 and |d̃(x)| ≤ 1,
respectively. The error function is defined as:

e(x) = d(x)− d̃(x). (17)

Our goal is to estimate the upper bound of |e(x)|. The
gradient of the error function is given by:

∇e(x) = ∇d(x)−∇d̃(x). (18)

According to the properties of gradients, we have:

|∇e(x)| = |∇d(x)−∇d̃(x)|
≤ |∇d(x)|+ |∇d̃(x)| (19)
≤ 1 + 1 = 2.

Let vt = {vi}4i=1 represent the four vertices of the tetra-
hedron. Then, the distance error for any vertex within the
tetrahedron satisfies

|e(x)| ≤ min
v∈vt

2 ∗ ∥x− v∥

Therefore, if we denote the radius of the circumscribed
sphere of the tetrahedron by h, the maximum error between
the linear distance field and the exact distance field within
the tetrahedron is 2h. Thus, in general, smaller and well-
shaped tetrahedra yield more accurate linear approximation
results. However, it is worth noting that the accuracy of
the results is independent of the resolution of the triangular
mesh. Specifically, when a surface patch is nearly planar, our
approach is particularly accurate because the true distance
field is linear, which aligns well with our linear approxima-
tion.

5 EVALUATION
Our algorithm was implemented using C++ on a platform
equipped with a 3.4 GHz AMD Ryzen 9 5950X 16-Core CPU,
64GB of memory, and the Windows 11 operating system.
We utilized double precision for data representation and
employed the numerical issue handling method described
in the paper. Most of the models used in the experiments
are sourced from the ABC Dataset [45].

5.1 Variant Voronoi Diagrams
Our method supports the computation of various Voronoi
diagram variants. In Fig. 5, we use four identical Koala
models as generators and compute four different Voronoi
diagrams, namely:

• Ordinary Voronoi Diagram (VD),
• Power Diagram [46],
• Additively Weighted Voronoi Diagram [47],
• Multiplicatively Weighted Voronoi Diagram [48].

In the following, we briefly introduce their definitions ex-
cept for the most traditional version, i.e., Ordinary Voronoi
Diagram.

Power Diagram (PD) considers both the proximity to
points and the influence of weights or powers associated
with the points. They have applications in areas such as
facility location optimization, where the weight or power
of a point represents its importance or capacity. Power dia-
grams allow for more flexible and customized partitioning
of space. The control region of si is defined as

CellPD(si) = {p | D(si, p)
2 − w2

i ≤ D(sj , p)
2 − w2

j , i ̸= j}.

Additively Weighted VD (AWVD) extends the concept
of Voronoi diagrams by assigning weights to represent
attributes or values associated with the points. AWVD
is useful for spatial interpolation, density estimation, and
decision-making problems where the combined influence of
multiple factors is considered. The control region of si is
defined as

CellAWVD(si) = {p | D(si, p) + wi ≤ D(sj , p) + wj , i ̸= j}.

Multiplicatively Weighted VD (MWVD) incorporates
weights as multiplicative factors instead of additive fac-
tors. This variation is particularly relevant in applications
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(a) VD (b) PD

(c) AWVD (d) MWVD
Fig. 5. Variant versions of Voronoi diagram. Here we take four identical
Koala models as generators.

where the weights represent scaling factors or proportional
relationships. MWVD has applications in fields such as
computational physics, where the weights may represent
physical properties or scaling factors for interactions. The
control region Cell of si is defined as

CellMWVD(si) = {p | D(si, p) · wi ≤ D(sj , p) · wj , i ̸= j}.

5.2 Medial Axis

5.2.0.1 Relevant approaches for comparison.: Nu-
merous approaches [40, 41, 49] have been proposed for the
medial-axis surfaces problem. The relevant approaches for
comparison include:

1) VoxelCore: Yan et al. [40] suggested identifying core
voxels (deemed to be located on the medial-axis
surface) from all voxels.

2) MATFP: Wang et al. [41] introduced a method for
computing the medial axis of CAD models. MATFP
preserves both external and internal features, but
the features have to be captured by a seam tracing
algorithm.

MATFP requires a step of pre-detecting sharp edges and
corners of a CAD model. It initializes with a sampling
approach and optimizes their positions before constructing
a medial mesh from the updated sphere candidates using re-
stricted regular triangulation. To the best of our knowledge,
MATFP represents the state-of-the-art in this field. Similar
to MATFP, our approach assumes that the CAD model has
been pre-decomposed into multiple surface patches by [50].
Additionally, our algorithm employs fTetWild [42] to tetra-
hedralize the interior of the input model.

TABLE 1
Time statistics (in seconds) of medial axis calculation for the models

shown in Fig. 6.

model 1 model 2 model 3 model 4 model 5

VoxelCore 1.726 1.587 0.576 2.351 1.111

MATFP
Medial Mesh Initialization 4.153 16.877 3.588 16.980 115.272

Thinning 1.537 186.675 2.010 88.692 1643.8

Ours
fTetwild 12.013 31.969 13.531 43.297 28.812

Propagation, Cutting 2.359 4.156 1.646 5.969 5.282

5.2.0.2 Visual comparison.: Fig. 6 presents a visual
comparison among VoxelCore [40], MATFP [41], and our
approach. It can be observed that VoxelCore has at least
two disadvantages. Firstly, when the resolution of voxels
is insufficient, the accuracy of VoxelCore is significantly
reduced. Secondly, the resulting medial axis exhibits many
spikes, failing to fully capture the sharp features of CAD
models. The results produced by MATFP successfully cap-
ture both the external and internal features of the medial
axis. Nonetheless, the method involves a step of tracking
stitching curves on the medial axis, during which the po-
sitions of the sampled points need to be relocated. This
can potentially lead to numerous wrinkles on the surface
of the medial axis and a significant number of long, thin
triangles. In contrast, calculating the medial axis as the
Voronoi diagram of patches cleverly avoids this issue. Addi-
tionally, the results calculated by MATFP inevitably contain
self-intersections, whereas our results do not exhibit this
problem.

5.2.0.3 Run-time performance.: Before conducting
comparisons, we first analyze the complexity of the algo-
rithm. Consider the scenario of computing the medial axis
for a model with n points within a tetrahedral mesh con-
taining nt elements. The time complexity for querying the
distance from any arbitrary point in space to the surface of
the model is O(log n), which is achieved by using a spatial
data structure to accelerate distance queries. Since the vol-
ume of each tetrahedron is relatively small, the number of
hyperplanes required for incremental cutting within a single
tetrahedron remains constant. Thus, the incremental cutting
within a single tetrahedron can be completed in O(1) time.
Therefore, the overall complexity of the incremental cutting
process is approximately O(nt log n). For specific models,
the runtime of the propagation and incremental cutting of
the algorithm increases linearly with the resolution of the
tetrahedral mesh. This means that as the tetrahedral mesh
resolution increases, the computational time also increases
proportionally, but at a linear rate.

In our methodology, we employ fTetwild as the tetrahe-
dralization solver, setting the target edge length parameter
to 0.015. Simultaneously, for MATFP, we set the downsam-
pling percentage to 0.1, and for the Voxel Core method,
we adjust the voxel sizes to 1283. These settings basically
ensure a fair comparison by maintaining similar resolutions
across methods. It’s important to highlight that, within our
algorithm, operations such as distance field propagation and
incremental hyperplane cutting can be performed indepen-
dently for different tetrahedra, allowing for a high degree of
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VoxelCore

MATFP

Ours

Fig. 6. Visual comparison among Voxel Core [40], MATFP [41], and ours shows that our approach significantly outperforms existing medial axis
computation methods on CAD models.
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Fig. 7. Statistics about the computational time on 120 models are
provided. MATFP and our approach are marked with grey and red dots,
respectively.

parallelization. Timing statistics (in seconds) for VoxelCore,
MATFP, and our method are comprehensively presented in
Table 1. It is noteworthy that the thinning process in MATFP
can be extremely time-consuming, in some cases taking
almost half an hour, which occurs for the fifth model shown
in Fig. 6. Additionally, Figure 7 illustrates the computation
time statistics for the medial axis across 120 randomly
selected models of varying scales, comparing the perfor-
mance between MATFP and our method, with the x-axis
representing the number of vertices in the medial axis re-
sults. In some cases, MATFP’s thinning process also requires
excessively long overhead. This is because the preliminary
medial axis computed using the MATFP method may not

Fig. 8. The sectional view of the medial axis before and after MATFP’s
thinning process. For this model, the thinning step takes 6,388 seconds,
whereas our method takes only 72 seconds to achieve comparable
results, making it faster than MATFP by two orders of magnitude.

consist of a collection of two-dimensional sheets, meaning
it does not satisfy the condition of being thin without any
solids. Therefore, a thinning step was employed for post-
processing to address this. Depending on the model, the
thinning step can sometimes be time-consuming. As shown
in Figure 8, the medial axis cross-section results before and
after the thinning process are presented. For this particular
model, the post-processing step took 6388s. Furthermore, by
randomly selecting 10 models and adjusting parameters to
achieve different resolutions for the computed medial axis,
Figure 9 illustrates the relationship between the time cost
and the number of vertices in the medial axis, comparing
our method with MATFP. It is evident that our method
demonstrates increasing runtime performance advantages
as the specified accuracy increases.
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Fig. 9. The runtime performance statistics of our algorithm indicate
that the timing cost incurred in the core steps scales linearly with the
resolution of tetrahedralization.

Fig. 10. We discretize the interior of the input model into different
numbers of tetrahedral elements to observe the influence of tetrahedral
size. We annotated the number of tetrahedra (Tets) in the figure.

5.2.0.4 Results under different tetrahedral resolu-
tions: Given our assumption that the distance field within
each tetrahedron changes linearly, and considering our prac-
tice of performing incremental cutting for each tetrahedron
during computation, the size of the tetrahedra plays a
crucial role in influencing the outcomes. In Fig. 10, we em-
ployed the fTetwild method on the model at varying tetra-
hedralization resolutions and showcased the computational
findings. It is evident that with an increase in the density
of tetrahedralization, the accuracy of the computed results
also improves. As demonstrated in Fig. 10, our methodology
is capable of achieving precise results with as few as 2K
tetrahedral elements.

Fig. 11. Even if the input models are as thin as sheet metal, our algorithm
can still generate a faithful medial-axis surface. It’s worth noting that, for
sheet metals, the side faces are excluded before computing the medial
axis.

5.2.0.5 Sheet metal models: Our method can be
easily extended to compute the medial-axis surface of sheet
metal models. The main challenge with sheet metal mod-
els is their thinness, which poses a significant hurdle for
sampling-based approaches that require a large number of
points. However, our approach considers each surface patch
as a whole, eliminating the need for a sampling step. As the
side faces typically have minimal impact on the structural
behavior during the simulation, they are excluded from the
generator list before computing the medial axis. Fig. 11 il-
lustrates two typical examples, showcasing the effectiveness
of our method.

5.2.0.6 Organic meshes.: To validate the effective-
ness of the proposed algorithm, we conducted tests on
organic meshes. The key difference between organic meshes
and CAD models lies in the lack of clear segmentation crite-
ria. We observed that one step of the Variational Shape Ap-
proximation method [51] involves partitioning the model’s
triangles into several categories. Therefore, we set the total
number of categories to 200 and used these categories as
surface patches for the algorithm’s input. For organic mod-
els, neighboring surface patches typically exhibit smooth
transitions, meaning that the Voronoi diagram between
them is generally not part of the true medial axis. Therefore,
we removed these unnecessary tiny structures during the
medial axis computation. As Figure 13 shows, our algorithm
still produces fair medial-axis results, demonstrating its
great potential.

5.2.0.7 Comparison with generalized Voronoi dia-
gram algorithms.: There are several methods for computing
generalized Voronoi diagrams that take an open or closed
surface as a generator. A seminal work in this field was
proposed by Edwards et al. [52]. It involves initially con-
structing an octree, storing essential information at nodes,
and subsequently obtaining approximate Voronoi diagram
results through reconstruction. However, these algorithms
face two primary issues when applied to the medial axis
computation of CAD models. On one side, its approxima-
tion strategy is not globally accurate, resulting in a lack of
smooth transitions at the intersections of different cubes. On
the other side, the algorithm’s configuration of the solution
space is not flexible, making it challenging to confine the
results within the model’s interior. Figure 14 demonstrates
that the approach by Edwards et al. [52] results in severely
bumpy surfaces due to the imprecision of its approximation
strategy.

5.2.0.8 Robustness.: We randomly selected 500
models from the ABC dataset (all models free of self-
intersections) for testing in two modes. This collection en-
compasses a variety of models including thin plates, slen-
der tubes, and high-genus structures, among others. When
computing the medial axis using the tolerance technique, we
encountered 8 instances of numerical errors, resulting in an
overall error rate of 1.6%. However, by adopting a robust
implementation (with exact numerical types discussed in
Section 4.2), we observed no numerical errors. We provide
additional results in Fig. 12, showcasing a gallery of medial
axis surfaces.

5.2.0.9 Impact of numeric types and threads on
runtime: In the incremental hyperplane cutting process, the
number of threads and the choice of exact/approximate
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Fig. 12. More medial-axis results computed by our algorithm.

Fig. 13. Medial axis computation results on organic meshes. Different
surface patches are represented using distinct colors.

incremental cutting strategies are closely related to the al-
gorithm’s runtime. Therefore, we use the model in Figure 8
as an example to study the algorithm’s running speed under
different thread counts and incremental cutting strategy set-
tings. The results are illustrated in Figure 15. It is observed
that when the number of threads reaches 32, the speed tends
to stabilize, which is also the number of threads chosen in
the experiments of this paper. Overall, the runtime of the
precise cutting strategy is approximately twice that of the
approximate incremental cutting strategy. In addition, we
made statistics about the time cost when merely replacing
the double data type with an exact type for precise com-
putation, while keeping the number of threads set to 32.

Input Ours Edwards et al. [52]

Fig. 14. Comparison with Edwards et al. [52].

The execution time cost in this case is 290.156 seconds. This
demonstrates the speed advantage of the precise cutting
strategy proposed in this paper.

5.3 Offset Surfaces
5.3.0.1 Problem statement.: Offsetting is a funda-

mental operation in computational geometry and computer
graphics. It approximates the shape of a 2D curve or 3D
surface by generating a parallel curve or surface at a
fixed distance from the original shape. This operation finds
various applications, such as creating smooth boundaries
around a shape [53], performing collision detection [54], and
generating tool paths for CNC machining [55].

5.3.0.2 Primary challenge.: For a given triangle
mesh, achieving accurate computation of offsets involves
dilating each triangle and explicitly resolving the introduced
self-intersections [56, 57, 58]. However, these approaches
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Fig. 15. Runtime statistics of the exact and approximate incremental
cutting strategies under different thread counts for the model in Figure 8.

necessitate a tedious post-processing step for handling self-
intersections. Alternatively, some methods entail resampling
the offset surface by computing the isosurface of the signed-
distance function derived from the original surface and
then enforcing a deviation [59]. CGAL includes an offsetting
function called Alpha Wrapping [53]. The resulting output
is achieved by greedily refining and carving a 3D Delau-
nay triangulation on an offset surface of the input, while
carving with empty balls of radius alpha. Nevertheless,
these methods may lead to inaccurate offset surfaces with
missing sharp features. The approach proposed by [60] pre-
serves feature information, but its computational process is
extremely time-consuming, making it impractical for some
applications.

Alpha Wrapping Ours

Fig. 16. A visual comparison between Alpha Wrapping [53] (left) and
our method (right) is shown, with close-up windows highlighting the
differences. It is evident that our algorithm can preserve sharp feature
lines, whereas Alpha Wrapping cannot.

5.3.0.3 Our solution.: Suppose we are computing
an offset surface at a user-specified distance of d. Mathe-
matically, we aim to find the the surface where

∣∣D∣∣ = d.
Considering that a CAD model can be easily decomposed
into a collection of simple surface patches, we assume that
each surface-patch generator si contributes a linear distance
field within a tetrahedron t = v1v2v3v4. Therefore, unlike
medial-axis extraction, si can survive in the tetrahedron
t = v1v2v3v4 if:

1) si is not defeated by other generators in t;
2) minj{D(si, vj)} ≤ d ≤ maxj{D(si, vj)}.

At the end of distance over-propagation, if a tetrahedron
contains an empty generator list, it does not contribute to
the offsetting surface.
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Fig. 17. Computation time of the offset surface on 100 models of Alpha
Wrapping and Ours.

TABLE 2
Time statistics (in seconds) of offset calculation for the models shown

in Fig. 18.

model 1 model 2 model 3 model 4 model 5 model 6

Alpha Wrapping 24.662 12.855 7.980 11.213 6.190 11.096

Ours
fTetwild 67.613 49.344 25.375 66.829 42.516 36.547

Propagation, Cutting 16.852 7.797 5.594 12.469 7.125 9.203

Our fundamental insight is that the offset surface at
distance d can be derived by identifying where the distance
field D matches 2d−D. It is much like the situation of me-
dial axis computations. For a given tetrahedron t, consider
its associated surface patch set as S = {si}mi=1. We then de-
fine a corresponding virtual patch set S

′
= {s′

i}mi=1. The dis-
tances from s

′

i to the vertices vi are set as 2d−D(si, vi). The
distance fields within the set S are used to incrementally cut
and preserve the lower envelope within a four-dimensional
framework. Concurrently, the distance fields within set S

′

perform incremental cuts to maintain the upper envelope
of the same four-dimensional structure. The intersection of
these two envelopes, resulting from the iterative process,
indicating the competition between S and S

′
. Through a

procedure akin to computing a medial axis, we are thus able
to delineate the offset surface, comprising both an inward
and an outward layer. Separating these layers based on their
connectivity subsequently becomes a straightforward task.

5.3.0.4 Visual comparison.: In Fig. 16, a visual com-
parison between the Alpha Wrapping algorithm and our
method is presented, with differences highlighted in close-
up views. The comparison demonstrates that our offsetting
algorithm can generate distinctive feature lines, while Alpha
Wrapping cannot. Additionally, it is important to note that
Alpha Wrapping does not support inward offsetting. More
examples for comparison are provided in Fig. 18.

5.3.0.5 Run-time performance.: In our experiments,
we chose an offset distance equivalent to 2% of the diagonal
length of the model’s bounding box. It is evident that the to-
tal time required is significantly influenced by the resolution
of tetrahedralization; a higher resolution leads to improved
accuracy. For the purpose of tetrahedralization, we leverage
the space created by offsetting the model’s bounding box
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Fig. 18. Visual comparison between Alpha Wrapping [53] and ours for computing offset surfaces.

and embed the input model within the tetrahedralization
outcome. Specifically, we set the target edge length for
fTetwild to 0.015 and adjust the alpha parameter for the
Alpha Wrapping algorithm to 256. The details regarding
runtime performance are provided in Table 2. Additionally,
we made statistics about the runtime of the Alpha Wrapping
method and ours on 100 randomly selected models, as
shown in Figure 17.

5.3.0.6 Results.: In Fig. 5, variant Voronoi diagrams
are presented, utilizing four identical Koala models as
generators. It should be noted that each variant provides
a tailored solution for various applications. This example
highlights the high flexibility and adaptability offered by
our algorithm.

6 LIMITATIONS AND FUTURE WORK
Our algorithm, in its current form, exhibits at least three
disadvantages. Firstly, it assumes that the tetrahedron-
range distance field for a single generator undergoes lin-
ear change, which may not hold if the tetrahedral size is
large. Secondly, the run-time performance diminishes if the
tetrahedralization is too dense. Finally, while our algorithm
can produce faithful medial axis and offset results for CAD
models, extending it to organic shapes is non-trivial due to
the equally challenging problem of decomposing the surface
of a free-form shape.

In the future, we plan to address these issues from two
perspectives. Firstly, we will introduce adaptive tetrahedral-
ization as an initialization step to balance computational
accuracy and run-time performance. Secondly, we will de-
velop improved strategies for decomposing the surface of
organic shapes.

7 CONCLUSION

In this paper, we extend SurfaceVoronoi to 3D and introduce
an accurate algorithm for computing Voronoi diagrams
of surface patches. The key observation is that the lower
envelope of the 4D roof-like structure encodes the Voronoi
diagram structure restricted to a tetrahedron. In implemen-
tation, we develop a numerically stable lifting technique
for 4D hyperplane cutting operations. The new algorithm
operates independently of pre-existing Voronoi numerical
packages. We demonstrate its effectiveness in extracting
high-quality medial axis transforms (MAT).

Due to its flexibility and scalability, our algorithm can
also be adapted to compute the offset surface and various
variants of the Voronoi diagram. We provide extensive
experimental results to validate its effectiveness and use-
fulness.
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